
 

COM3600 
Individual Project 

 

Shadow Puppetry Using the Kinect 

Author: 
Benjamin M. Carr 

 

Supervisor:  
Dr. Guy J. Brown 

 

 

 

 

 

 

 

6th May 2014 

 

 

This report is submitted in partial fulfilment of the requirement for the degree 

of Master of Computing in Computer Science by Benjamin M. Carr. 



 

i 

Declaration  

All sentences or passages quoted in this report from other people's work have 

been specifically acknowledged by clear cross-referencing to author, work and 

page(s). Any illustrations which are not the work of the author of this report 

have been used with the explicit permission of the originator and are 

specifically acknowledged. I understand that failure to do this amounts to 

plagiarism and will be considered grounds for failure in this project and the 

degree examination as a whole. 

 

 

Name:   Benjamin M. Carr 

 

Date:  6th May 2014 

 

Signature:   

 

  



 

ii 

Abstract 

Shadow puppetry is a form of storytelling where the characters are made from 

the shadows cast by puppets. The goal of this project is to build a real-time 

shadow puppet storytelling application using the Microsoft Kinect sensor. Its 

depth sensing ability is the perfect tool for tracking users and allowing them to 

control puppets onscreen, just by moving their body. The project is developed 

in the C++ programming language and uses the Cinder library for image 

processing. 

 

The system includes various image processing techniques to achieve a real-

time, depth-based blur effect that is both efficient and visually appealing. It 

also includes a robust gesture recognition system based on the dynamic time 

warping algorithm to allow users to interact with the system and to create 

engaging and varied stories. These stories can be recorded and saved to file for 

later playback, or exported as video files. 

 

  



 

iii 

Acknowledgements 

I would like to thank my supervisor Guy Brown for allowing me to take on this 

project and for all his guidance throughout. I would also like to thank my 

family and friends for their constant support.  



 

iv 

Contents 

 

Declaration ...................................................................................................... i 

Abstract ......................................................................................................... ii 

Acknowledgements ........................................................................................ iii 

Contents ........................................................................................................ iv 

Chapter 1: Introduction ................................................................................. 1 

Chapter 2: Literature Review ........................................................................ 2 

2.1 Shadow Puppetry .............................................................................. 2 

2.1.1 Wayang Kulit ............................................................................ 3 

2.2 Kinect (C++) ................................................................................... 4 

2.2.1 History ....................................................................................... 5 

2.2.2 Technology ................................................................................ 6 

2.2.3 Drivers ....................................................................................... 7 

2.2.4 Skeleton Tracking ..................................................................... 8 

2.3 Image Processing............................................................................. 10 

2.3.1 Programming Libraries ........................................................... 10 

2.3.2 Blurring ................................................................................... 11 

2.3.3 Gaussian Blurring ................................................................... 12 

2.3.4 Alternative Blur Techniques ................................................... 13 

2.4 Gesture Recognition ........................................................................ 14 

2.4.1 Hidden Markov Models ........................................................... 14 

2.4.2 Dynamic Time Warping .......................................................... 15 

Chapter 3: Requirements and Analysis ....................................................... 17 

3.1 System Requirements ...................................................................... 17 

3.2 Analysis ........................................................................................... 19 

3.2.1 Real-time Blurring .................................................................. 19 

3.2.2 Recording Shadow Plays ......................................................... 20 

3.2.3 Gesture Recognition ................................................................ 21 

3.3 Testing and Evaluation .................................................................. 22 

Chapter 4: Design ........................................................................................ 24 

4.1 Methodology ................................................................................... 24 



 

v 

4.2 System Overview ............................................................................ 25 

4.3 System Interaction .......................................................................... 28 

4.4 Storytelling ...................................................................................... 30 

Chapter 5: Implementation and Testing...................................................... 31 

5.1 Implementation ............................................................................... 31 

5.1.1 Programming Language and Framework ................................ 31 

5.1.2 Rendering Shadow Puppets .................................................... 32 

5.1.3 Real-time Blurring .................................................................. 35 

5.1.4 Saving Stories .......................................................................... 37 

5.1.5 Gesture Recognition ................................................................ 40 

5.1.6 Other Features ........................................................................ 43 

5.2 Testing ............................................................................................ 44 

Chapter 6: Results and Discussion .............................................................. 45 

6.1 User Feedback ................................................................................. 45 

6.2 System Performance ....................................................................... 47 

6.3 Gesture Recognition ........................................................................ 49 

6.4 File Handling .................................................................................. 51 

6.5 Video Exporting .............................................................................. 54 

6.6 Requirements Evaluation ................................................................ 55 

6.7 Further Work .................................................................................. 57 

Chapter 7: Conclusions ................................................................................ 59 

References .................................................................................................... 61 

Table of Figures ........................................................................................... 65 

 

 

 



 

1 

Chapter 1:  Introduction 

Shadow puppetry is a form of storytelling where the characters are made from 

the shadows cast by puppets. It originated in Southeast Asia and is particularly 

popular on the Indonesian islands Java and Bali. A traditional shadow puppet 

set consists of three components: a light source, a translucent screen and a set 

of puppets in the shape of figurines and objects. These puppets are placed in 

between the light source and the screen to create the shadows that the 

audience see. 

 

This project aims to bring traditional shadow puppetry into the digital age, 

with the aid of the Kinect. The Kinect is a piece of hardware originally 

developed as a peripheral for the Xbox 360 gaming console, but has since been 

released as a developer tool for the PC. Its main feature is its ability to track 

objects in three dimensions using its infrared depth sensing technology. For this 

project, the Kinect Skeleton API will be used to track the user’s body 

movements and translate them over to the onscreen puppet. 

 

The system will be developed to allow users to control their own virtual 

puppets in real-time. Using the position of various joints in the user’s body and 

arms, the puppet will be able to imitate poses and actions that the user 

performs as they move around. There will also be a series of image processing 

effects including depth blurring as the user moves forwards and backwards. 

However, performing real-time blurring is not an easy task and will require an 

efficient algorithm to be feasible. Finally, a gesture recognition system will be 

implemented to allow actions to be performed during stories, such as changing 

puppets. All these features combined will allow users to record and playback 

their own stories or export them as videos to share with friends. The final 

product will be used as an entertainment application primarily aimed at 

teenagers and students.  

 

Chapter 2 of this document will explore existing literature on different 

aspects of the system, and will help to explain the details of the system. It will 

cover various elements of the Kinect including its skeleton tracking algorithm, 

and how different gesture recognition techniques can be used. On top of this, it 

will also cover image processing techniques such as real-time Gaussian blurring, 

and how external frameworks and libraries can provide some of this 

functionality. Chapter 3 will formally outline the requirements of the system 

and explore methods of testing, while Chapter 4 will explain the final plan for 

the system. Chapter 5 section explores the system in more detail followed by 

chapter 6 which explores and evaluates the final system. Finally, chapter 7 will 

summarise this report. 



 

2 

Chapter 2:  Literature Review

The literature review provides background information on the project and 

examines existing publications in the areas relating to the project. Each of 

these areas provides core functionality to the system, and many have already 

been implemented in similar systems in the past. Analysing these past systems 

helps to identify different options for this project and weight up which will be 

best for this particular system. It also highlights potential problems which may 

be encountered during development, allowing for early contingency plans to be 

made. This section aims to explore these relevant areas in more detail, 

highlighting how they will be used in this project and what benefits they have 

over alternative methods.  

2.1 Shadow Puppetry 

As mentioned earlier in the report, this project is based around simulating 

shadow puppetry using the Kinect. Shadow puppetry (or shadow play) is a 

form of storytelling where the characters and props are made from the shadows 

cast by puppets. Traditional shadow play performances originated in Southeast 

Asia where they are considered an ancient art, but have also spread to Western 

countries.  

 

A shadow puppet set consists of three components: a light source, a 

translucent screen and a series of objects or puppets which are used to create 

the shadows. These puppets are placed in between the light source and the 

screen; the resulting shadows represent the characters and props used within 

the story. The audience views the show from the other side of the screen and 

therefore will only see the shadow figurines being depicted. Figure 2.1 shows a 

basic shadow puppet theatre setup. Traditional shadow puppet theatres would 

have used alternative light sources such as an oil lamp.  



CHAPTER 2: LITERATURE REVIEW 

3 

 
Figure 2.1 – A shadow puppet theatre setup 

Although extremely popular in Southeast Asia, shadow puppetry’s meaning 

has been somewhat confused during its transition to the West. When the name 

is mentioned, many Westerner’s would likely think of a variant of shadow play 

known as shadowgraphy. This is another storytelling art form that utilises 

shadows to represent characters and props, but the difference lies in how the 

shadow figures are made. Unlike shadow play where puppets are specifically 

crafted physical items, shadowgraphy uses hand shadows to create the 

figurines. The puppeteer(s) arrange their hands and fingers in positions that 

will cast shadows that resemble characters, usually animals. It is not 

uncommon for the puppeteer’s hands to overlap to create intricate shapes and 

shadows. Popular shadowgraphy puppets include rabbits, dogs and butterflies. 

However, although it is more well-known in the West than traditional shadow 

play, it is not what this project is focused on. For the rest of this report, any 

reference to shadow puppetry or shadow play is referring to the traditional 

form from Southeast Asia.  

2.1.1 Wayang Kulit 

One of the oldest forms of shadow puppetry and the one that is focused on in 

this project is Wayang Kulit. This is a traditional art form originating in 

Indonesia, and is particularly popular in both Java and Bali. The term Wayang 

roughly translates to “performance” and Kulit to “skin”, a reference the leather 

material the puppets are made out of. 

 

Long (1982) describes how Wayang Kulit plays are usually based on the 

stories of either Mahabarata or Ramayana, two Hindu epics. The puppets 

resemble characters from the story and there can be as many as 500 puppets in 

one set. An example Wayang Kulit puppet is shown in Figure 2.2. Shows are 

performed by a puppetmaster known as the Dalang, who controls the puppets 

Audience 

Screen 

Puppeteer 

Light 

Source 



CHAPTER 2: LITERATURE REVIEW 

4 

using bamboo sticks and also provides voices and sound effects. The screen 

between the puppets and the audience is made from a thin layer of cotton or 

linen to allow enough light to pass through. 

 

Wayang Kulit performances often have a musical accompaniment in the 

form of traditional Indonesian ensembles. They are known as gamelan and 

usually consist of gongs, drums, xylophones, metallophones and stringed 

instruments. The orchestra provide continuous music throughout the 

performance and are only guided by unspoken cues from the Dalang, who 

signals when the mood of the music should change.  

 

 
Figure 2.2 – Wayang Kulit shadow puppets 

 

2.2 Kinect (C++) 

The biggest component of the system is undoubtedly the Kinect sensor. 

Produced by Microsoft, the Kinect is a 3D motion sensing device originally 

introduced as a peripheral for the Xbox 360 gaming console. It is capable of 

tracking up to six users and includes features such as gesture support, voice 

recognition, and facial tracking, which are all designed to give the user more 

control when interacting with their console and playing games.  

 



CHAPTER 2: LITERATURE REVIEW 

5 

2.2.1 History 

In the 2009 E31 event, Microsoft announced that it is working on a new 

motion-sensing controller for the Xbox 360 gaming console, known then as 

Project Natal. The announcement featured a demonstration of the racing game 

Burnout Paradise being played with the new device. Unlike previous consoles, 

the player controlled the vehicle by grabbing hold of an invisible ‘steering 

wheel’ in the space above them, turning their hands to steer. This kind of 

motion control was a completely new innovation, like nothing before it and 

instantly gained a lot of excitement and coverage from the press. 

 

As the Kinect grew in popularity, demand grew for the Kinect to be opened 

up for public development. Microsoft responded to the demand in 2012 by 

releasing the Kinect for Windows and the free Kinect SDK2, allowing 

developers to create their own Kinect enabled applications. This was designed 

to open up the possibilities of the Kinect for uses other than gaming, enabling 

anyone with the device to access data from their device and build their own 

systems in C++, C# or Visual Basic. The SDK has been through many 

iterations and today (at version 1.8) offers skeletal tracking, facial recognition, 

gesture recognition, background removal and even the ability to build up 

complex 3D models of an environment scanned with the Kinect3.  

 

Since the launch of the original Kinect, Microsoft has released their next 

generation of gaming console and the Xbox 360’s replacement, the Xbox One. 

At the same time, they also revised the Kinect which is sold with the new 

console. The new Kinect contains an array of improvements over the old 

version, including faster processing, greater accuracy and a higher resolution 

camera. This revised device is currently only available for the new Xbox One 

console, but Microsoft have confirmed that an updated Kinect for Windows 

will be released in 2014 allowing developers to take advantage of the new 

hardware in other applications. However, because the new Kinect is not yet 

compatible with PC’s, this project will use the original Kinect. 

 

PrimeSense, the company who provided the technology for the original 

Kinect, have recently been acquired by the electronics company Apple. It is 

rumoured that 3D sensing technology may also find its way into smartphones, 

tablets and laptops in the near future, proving just how successful the original 

Kinect has been. 

 

                                           
 

 
1 Electronic Entertainment Expo 
2 Software development kit 
3 Using Kinect Fusion technology included in the SDK and compatible 

hardware 



CHAPTER 2: LITERATURE REVIEW 

6 

Similar games consoles have also attempted to create their own motion 

sensing devices. The most notable example of this was the Nintendo Wii, which 

was likely to have been inspiration for Kinect. This was released in 2006 and 

unlike any console before it, featured a wireless remote controller. It uses 

multiple accelerometers to determine its orientation and infrared technology to 

track where the user is in 3D space. This was something completely new to the 

gaming world and was received by the public extremely well, winning multiple 

awards. Sony then released a similar device called PlayStation Move which also 

utilises a webcam to capture the player’s movements. 

2.2.2 Technology 

The Kinect is built using technology from 3D sensing company PrimeSense. 

Each Kinect sensor comprises of two main components for depth sensing: an 

infrared (IR) emitter and an infrared camera. There are two ways of creating a 

depth map with these components; the most common approach is to use time-

of-flight laser sensing. This is where multiple beams of infrared light are fired 

out into the environment from the emitter, and then read back using the IR 

camera. The length of time it takes for each beam to return to the device, the 

further away that area of the scene is. Using many beams enables the device to 

create a detailed depth map extremely quickly.  

 

Figure 2.3 – PrimeSense’s depth sensing technology explained 



CHAPTER 2: LITERATURE REVIEW 

7 

However, the Kinect employs the second depth sensing method. Unlike 

time-of-flight sensing, the Kinect emits coded patterns of light into the scene. 

Depending on how far the light has to travel, or in other words how close the 

objects are to the emitter, the light coding will become distorted. The amount 

of distortion indicates the depth at that particular point in the scene. The IR 

sensor then scans the scene and reads in each section of coded light and runs it 

through PrimeSense’s Light Coding™ algorithms. This uses triangulation 

between the sensor, emitter and coded light in the scene to calculate the actual 

depth of each area, building up a full depth map of the environment from the 

devices point of view. 

 

The Kinect also features some interesting algorithms for detecting humans. 

One feature the device includes is Kinect Identity which allows it to recognise 

different users based on their appearance. Leyvand, et al. (2011) explains that 

this is done using three attributes of the player: facial recognition, their clothes 

and their height. Every time a user walks into view, these attributes are 

identified and the system attempts to find a match against existing user 

attributes. It creates a truth table of every attribute that matches and the 

stored user that scores highest will be the identification used. If there are no 

matches at all, the system will not identify the user. 

 

This technique works well but is not without its challenges. For instance, 

although a height will not change quickly, people will almost certainly change 

their clothes each time they use the system. Also, facial recognition may fail if 

the user pulls different facial expressions. To avoid this problem, the system 

stores extra information about the user when they are identified such as the 

lighting conditions and the time of day. It also builds up a dataset about the 

user taking multiple snapshots to accommodate for different environment 

conditions. Over time, this dataset will build until the user can be correctly 

identified in almost any condition, whether the setting has changed or their 

appearance changes. 

2.2.3 Drivers 

Microsoft provides a free SDK for any developer who wishes to build 

applications for the Kinect. This was released in conjunction with the Kinect 

for Windows version of the device, which is specifically aimed for PC based 

development. Since its release, it has been updated and refined to include more 

API’s1 and unlock more of the devices potential. These have included major 

updates such as face tracking, background removal, seated skeleton tracking 

and also Kinect Fusion which allows 3D models to be created by scanning 

                                           
 

 
1  Application Programming Interface – defines how different software 

components should communicate 



CHAPTER 2: LITERATURE REVIEW 

8 

environments with the device. There have also been smaller additions such as 

the accelerometer control, colour camera settings and infrared emitter API’s for 

finer control of the components in the device, amongst general software 

improvements.  

 

The official SDK from Microsoft is designed to be used in three 

programming languages: C++, C# and Visual Basic. While these are all 

powerful languages, none of them allow multi-platform applications to be 

developed; they must run on a PC. In 2010, a competition was posted requiring 

contestants to develop an open-source driver for the Kinect. The winner of this 

contest successfully produced a Kinect driver for Linux known as LibFreenect 

with basic access to colour and depth camera information. This opened up the 

possibility of using the Kinect on other platforms and with different 

programming languages, essentially making it accessible to even more 

developers. 

 

Only a month after the competition ended, PrimeSense who supplied the 

technology behind the Kinect announced that they were also developing their 

own open-source drivers. These were released in an SDK called OpenNI which 

is a joint effort between PrimeSense and other developers, and is available for 

Windows, Linux and Mac. PrimeSense also went one step further, releasing a 

motion tracking middleware called NITE which brings some of the official SDK 

algorithms to these other platforms, including skeleton tracking, hand tracking, 

gesture recognition and background removal.  

 

For this project, all of the development will be done on a Windows machine 

in C++. Therefore, there would be no benefit in using the open-source drivers 

and SDK from PrimeSense. Instead, the project will use the official SDK from 

Microsoft which not only provide more functionality, but also will be more 

reliable and efficient for the application. This is especially important when 

dealing with real-time applications such as this one. 

 

This project will also use the Cinder library, which will be explored in more 

detail in Section 2.3.1. Cinder applications are slightly different to a traditional 

C++ application and import ‘blocks’ of code to enable more functionality. 

There is a Cinder block called KinectSDK which allows the official SDK to be 

used within Cinder applications such as this one, which is what will be 

implemented in this project. Again, this will be covered in more detail later on 

in the report. 

2.2.4 Skeleton Tracking 

One of the most important features of the Kinect is its ability to track users in 

real-time. This is handled using the Skeleton API included in the official Kinect 

SDK but before this can happen, the user must be identified and extracted 



CHAPTER 2: LITERATURE REVIEW 

9 

from the camera image. Zeng (2012) explains how Microsoft use an efficient 

algorithm to achieve this in real-time. Each part of the user’s body is split into 

segments and represented using joints, where the complete set of joints forms a 

skeleton. To segment a user’s body, each pixel is classified using a set of 

training data. This data consists of example human shapes in various poses to 

give a full representation of the human body in all forms. The classifier itself 

uses hundreds of thousands of training images to find a possible match, using 

randomness to lower computational costs.  

 

Once each pixel is classified and the body is separated into body parts, the 

joint positions are calculated using a mean shift technique, ultimately returning 

the final skeleton. The results are such that this entire algorithm can be run on 

an Xbox 360 GPU at 200 frames per second, which is highly efficient. This 

entire process is visualised in Figure 2.4, showing the skeletal tracking pipeline 

from start to finish. 

 

 
Figure 2.4 – The Kinect skeletal tracking pipeline 

 

This skeleton data is designed to allow Xbox users to control on-screen 

avatars using their body movements. On top of this, facial recognition is used 

to allow the avatars to express facial emotion. This data has much more 

potential that this and could be used in a variety of situations. In this project, 

the skeleton data will be collected from the user, and used to control shadow 

puppets on-screen. The rotation of arm joints will be used to rotate the 

puppets arms, giving a high feeling of control over the puppet for the user. 

 

Other implementations of Kinect shadow puppetry have been implemented 

in the past but with slight differences. One particularly successful shadow 

puppet application is Puppet Parade which was showcased at the Cinekid 

festival in 2011. Unlike this project, the user in Puppet Parade controls a bird’s 

head and neck rather than a full traditional shadow puppet. Also instead of 

controlling the bird with their entire body, only the arm section of the skeleton 

data is used. The bird is mapped to the arm using the joint rotations at the 

shoulder, elbow and wrist, allowing the user to manipulate the bird into 

Depth Image Inferred body 
parts 

Hypothesized 
joints 

Tracked 
skeleton 



CHAPTER 2: LITERATURE REVIEW 

10 

different positions. The bird puppet also has the ability to “squawk” by opening 

its mouth, controlled by the user opening their hand. The plan for this project 

is to take this one step further and utilise the whole body movements to 

control a traditional Indonesian shadow puppet. 

2.3 Image Processing 

An important technique used for many applications is image processing. This is 

the process of taking an image or video frame and modifying certain 

parameters of the image in order to change its appearance. Image processing is 

a common technique used in computer graphics which can be used to create 

many effects for a wide variety of purposes. Examples of effects created using 

image processing include greyscale, sharpening, blurring, noise reduction, 

contrast modifications, white balance and colourisation. One or more of these 

techniques can be used to enhance images in a variety of ways. 

 

2.3.1 Programming Libraries 

C++, which is the programming language that will be used in this project, 

allows applications to be built for Windows machines. However, it is not a 

language designed for computer graphics purposes, and especially not for image 

processing. Therefore, additional libraries are required to create a shadow 

puppet application which utilises advanced computer graphics. This project will 

include the Cinder library, which provides many methods and implementations 

that are required for creating applications such as audio, video, networking, 

geometry and most importantly, graphics and image processing.  

 

Cinder utilises OpenGL, an industry standard API that allows the 

rendering of 2D and 3D graphics by communicating directly with the GPU 

(Graphics Processing Unit). This allows hardware-acceleration to be achieved 

which boosts the performance of rendering by running computation on the 

GPU hardware rather than in the software. It also provides methods for 

multiple platforms and languages, not only computer based but also mobile 

based devices and even on web browsers. For this project, OpenGL will be used 

to render the 3D puppet scene and to interact with the Kinect’s 3D skeleton 

data. 

 

Although Cinder will provide all the relevant graphics libraries required, 

there are alternative libraries that can be used. Another C++ library which 

provides similar functionality is openFrameworks. Similar to Cinder, this 

includes many libraries used for graphics and image processing. However, the 

main difference between the two is the libraries that are included in each. 

Cinder is dependent on many libraries that are included in the operating 

system, whereas openFrameworks uses more open-source libraries. The 

advantages of open-source libraries are that they provide more control when 



CHAPTER 2: LITERATURE REVIEW 

11 

developing applications, but what they lack is the reliability and robustness of 

operating system libraries. When working with real-time 3D graphics, it is very 

important for the application to be robust and responsive which explains why 

Cinder has been chosen for this particular project.  

 

A similar library aimed towards Java applications is Processing. This 

contains much of the same functionality as Cinder and openFrameworks, but 

targets cross-platform compatibility. The library itself uses its own variant of 

Java and comes bundled with a full IDE1 for easier development. It also 

integrates OpenGL like the other two and supports 2D and 3D graphics, with 

its main aim to teach users basic programming using a visual context. However 

because it is based on Java, it will lack the performance of C++ applications 

and is therefore not as well suited to real-time application utilising the Kinect.  

2.3.2 Blurring 

Image processing can be used to produce many effects, but one particularly 

interesting effect is blurring. This effect is commonly used to produce depth of 

field, bloom and motion blurs. However, what may seem like a simple process 

can involve a great deal of computation to achieve a visually pleasing result. 

Blurring, in addition to many other effects, utilises a convolution matrix or 

kernel which is simply a fixed size matrix of numbers. The matrix is used to 

modify each pixel in an image based on the pixels in its surrounding area, 

known as a neighbourhood. The number in the centre of the matrix represents 

the pixel being analysed, and the rest of the numbers define the neighbouring 

pixel’s influences.  

 

Kernels are used for each and every pixel in the image which can be a 

computationally expensive task. The kernel must be moved around the entire 

image, and this is done using a technique known as discrete convolution.  

Press, et al. (1989) provide the definition of 2D discrete convolution which can 

be seen in Equation 2.1, where   represents the kernel,   represents the image 

and   and   represent the neighbourhood of pixels surrounding the pixel 

defined by (   ). Convolution uses the star operator ( ) with the kernel, the 

image and the current pixel to apply the kernel to that pixel. This equation is 

calculated for every pixel in the image. When the kernel is faced with an edge 

of the image and pixel data is not available, there are a few techniques which 

can be used. The most common is to extend the edge pixel outwards to supply 

the missing data, but another method is to tile the image and use data from 

the opposite edge. 

 

                                           
 

 
1 Integrated Development Environment 



CHAPTER 2: LITERATURE REVIEW 

12 

(   )(   )   ∑ ∑  (   ) (       )

 

    

 

    

 

Equation 2.1 – 2D Discrete Convolution 

 

2.3.3 Gaussian Blurring 

One of the most popular blurring algorithms in computer graphics is Gaussian 

blurring. This is where the Gaussian function is used to calculate the pixel 

weightings in the kernel. As Sonka, et al. (1999) explain, the Gaussian function, 

described in Equation 2.2, is similar to a normal distribution function, 

producing a kernel with higher weighed numbers in the centre, descending 

outwards in all directions. When run on a pixel, this produces a weighted 

average of it and its neighbouring pixels, producing a blurred image. The bigger 

the kernel, the more pixels will be sampled and the blurrier the image will be. 

 

 

 (   )  
 

    
 
  
     

    

Equation 2.2 – Two dimensional Gaussian function 

 

 

Figure 2.5 – A two dimensional plot of a Gaussian function 

 



CHAPTER 2: LITERATURE REVIEW 

13 

2.3.4 Alternative Blur Techniques 

One of the major problems with a Gaussian blur is that it is computationally 

expensive and takes a long time to produce a result, especially for large images 

and kernels. However, there are techniques which can be used to reduce the 

amount of computation required. A common technique as described by Horn 

(1986) is to use a two-pass, one-dimensional Gaussian blur, using convolution. 

This involves a one-dimensional kernel which is applied twice for the same 

image; once to blur the image horizontally and once to blur vertically. This is 

made possible due to the fact that Gaussian filters are separable, meaning that 

multiple smaller filters can be applied to achieve the same effect as one large 

filter. Using two passes is essentially the same as creating a two-dimensional 

kernel and using that on the image, like a traditional Gaussian blur. The final 

result is the same as a two-dimensional Gaussian blur but with much less 

computation required.  

 

An even faster technique is to approximate a Gaussian blur using a box 

blur. Russ (2006) describes that a box blur uses a kernel where everything is 

equal to one, producing a non-weighted average of a neighbourhood of pixels. 

However because each pixel is weighted equally in the square kernel, this 

produces a very hard-edged box effect blur, hence the name. Figure 2.6 

demonstrates the visual differences between a box blur and a Gaussian blur. 

The image consists of a 20 by 20 pixel square with a 5 pixel blur radius applied 

in both cases and clearly shows how a box blur does not produce as smooth an 

effect as a true Gaussian blur. Running a box blur multiple times does combat 

this issue somewhat but increases computation time further.  

 

 

Figure 2.6 – From left to right: Original image, Image with box blur, Image with Gaussian 
blur 

 

Another alternative blurring method is to take advantage of mipmapping. 

This is when a texture is pre-optimised by reducing its width and height in 

order to combat graphical artefacts such as aliasing, an effect in which 

repeating textures can appear distorted when sampled at different resolutions. 

Mipmaps contain the same texture at multiple resolutions, usually in powers of 

two, so that the application can use smaller textures when the high levels of 



CHAPTER 2: LITERATURE REVIEW 

14 

detail are not required, such as objects in the distance. Mipmaps can be 

generated automatically using OpenGL, but can be controlled further when 

created manually. For instance, Lee, et al. (2009) explain how smaller 

resolution textures can be pre-blurred to give the effect of real-time blurring for 

effects such as depth of field. To get the best effect, the smaller the texture, the 

bigger the pre-blur should be. This technique is much less computationally 

expensive but is not as adaptable as a real-time Gaussian blur when using a 

wide range of depths. 

2.4 Gesture Recognition 

Gesture recognition is the use of algorithms in a system to determine when the 

user has performed a pose or gesture. Gestures can be used to trigger events, 

issue commands or to interact with a system, all of which are commonly used 

in virtual reality applications. There are two areas of gesture recognition: pose 

recognition and gesture recognition. The former is when a system can identify a 

user in a static body pose which would be used to trigger an event in the 

system. Kang, et al. (2011) suggests that this can be done easily achieved by 

analysing the 3D joint positions of the user and their rotations relative to other 

joints. If these parameters are a close enough match with any of the stored 

poses for a given amount of time, the system can assume that the user is 

performing that pose.  

 

Gesture recognition however is more complicated to detect. Gestures 

themselves are not a static pose which can be detected over a fixed period of 

time, but rather a linear transition from one position to another. This means 

that the gesture must be recorded frame by frame, analysed and classified 

against a set of reference recordings. This presents its own problems but there 

are algorithms that attempt to solve this. 

 

2.4.1 Hidden Markov Models 

One way of performing gesture recognition is to use Hidden Markov Models 

(HMMs). Using this stochastic technique, gestures can be represented as a 

series of states with transitions from one to another. These transitions can be 

represented by dynamic Bayesian networks and can have probabilities from 

state to state. By calculating the likelihood that a sequence passed through the 

same set of states that represent a gesture, the probability of that gesture 

occurring can be determined. 

 

Starner (1995) used this algorithm to detect American Sign Language from 

a mouse input. The system had nine gestures each with six states and a 

collection of samples were collected for training and testing. Using 10 samples 

per gesture as training data, the performance of the system was 91.56% but by 

increasing this to 100 samples, the performance also increased to 99.78%. These 



CHAPTER 2: LITERATURE REVIEW 

15 

results are incredibly impressive and show great potential for this algorithm 

being used for gesture recognition. However, it also shows how reliant it is on 

large amounts of training data and in a system aimed at multiple sizes and 

builds of user, the accuracy could be much lower.  

 

2.4.2 Dynamic Time Warping 

Gavrila & Davis (1995) suggest that dynamic time warping (DTW) is another 

viable algorithm for gesture recognition. This involves referring to a gesture as 

a time series of parameters in n-dimensions which can be used for classification, 

such as joint positions or rotations. These parameters form a path through time 

from one position to another; therefore to classify the movement as a gesture, 

the system simply has to find the reference path that matches it the closest. 

This can be done using the Euclidian distance between the two poses at each 

time frame and computing a cumulative distance over the length of the path. 

The smaller the cumulative distance, the more similar the paths are and the 

more likely it is to be classified as that particular gesture. Figure 2.7 visualises 

the shortest cumulative distance between two time sequences as a grid. 

 

 

 
 

Figure 2.7 – A dynamic time warping grid visualising two time sequences and the shortest 
distance path between them 

 

DTW also takes into account that the paths may not be the same length; 

i.e. the gesture may have been performed slower or quicker than the reference. 

The algorithm attempts to ‘warp’ the path in order to match the timescales of 

reference paths, creating a mapping from one path to another. Figure 2.8 

visualises two time sequences with Euclidian and DTW distance measures. 



CHAPTER 2: LITERATURE REVIEW 

16 

Using only Euclidian distance mistakenly aligns the two sequences against the 

time axis, whereas DTW allows for a more intuitive match. This allows for 

better classification by reducing the risk of overlooking gestures because they 

were performed at different speeds. Unlike HMMs, a reliable DTW model can 

be achieved with much less training data making it more suitable for systems 

that target many different users.  

 

 

 
Figure 2.8 – Two time sequences with their Euclidian and dynamic time warped distance 

measures at each point in time 

 

An improvement to this algorithm can be achieved by weighting the 

distance function. The original algorithm uses the Euclidian distance between 

two poses but as Reyes, et al. (2011) explains in their article, joints are more 

relevant to certain gestures than others. For example when analysing a ‘waving’ 

gesture, the lower body joint information would be less relevant than the arm 

joints. They suggest that joints can be weighted using their variability during a 

gesture, where a higher variance implies that the joint is more important. 

These weights can then be normalised and applied in the Euclidian distance 

function as shown in Equation 2.3. 

 

  √∑  (     ) 
 

   

 

Equation 2.3 – Weighted Euclidian distance function 

 

In this function, q and p are a set of joints representing a pose in a live and 

reference gesture, w is the set of weights for each joint and n is the number of 

joints in the pose. The results of their testing prove that this technique does 

improve or at least match the accuracy of the standard DTW algorithm. For 

most gesture recognition systems, this technique can be used to increase the 

performance of gesture classification and is a worthwhile addition. 

 



 

17 

Chapter 3:  Requirements and Analysis

This section will outline the projects aims and objectives, and also the criteria 

that will be used to evaluate the success of the system. Defining goals allows 

for a clear development path and will help to create a system that is fit for 

purpose. The project will also be broken down into smaller sections which will 

be explained in turn.  

3.1 System Requirements 

As this project is relatively open-ended, there were few set requirements at the 

start of the project. It had many different paths that could be explored which 

would produce various different systems. Based on the project description, the 

following requirements were defined: 

 The system must be able to display shadow puppets on screen 

 Users must interact with the system using a Microsoft Kinect device 

 The puppets will be manipulated by the movements of  the user via 

the Kinect device 

 The system must allow users to make (and record) shadow plays 

using the puppets 

 Image processing techniques must be used to add realism 

 

These requirements form a basis for the system, providing a starting point 

for development. However, these requirements only define the fundamentals of 

the system, and further research was needed to give the project a more definite 

end goal.  

 

After conducting the research outlined in Section 2, the system was broken 

down into four distinct areas that would be worked on: using the Kinect to 

track users and control puppets on screen, allowing users to record their 

shadow plays, to provide realistic effects such as blurring using image 

processing techniques and finally, to allow users to control the system using 

gesture recognition. These enhance the system in different ways but all four are 

required to make a system that is suitable for its end purpose. From this, a set 

of functional and non-functional requirements were defined outlined in Table 

3.1 and Table 3.2, which can be used to evaluate the system at the end of the 

project. Requirements are categorised by importance, where essential 

requirements must be completed, desirable requirements would be important 

but not required for the system to function, and optional requirements are 

those which provide additional functionality if there is time at the end of the 

project. 



CHAPTER 3: REQUIREMENTS AND ANALYSIS 

18 

ID Requirement Importance 

1 
Users movements must be tracked using the Kinect and 
used to control onscreen puppets 

Essential 

2 
The system should support multiple user tracking and 
puppets 

Desirable 

3 
The system must run in real-time at a frame rate of at 
least 30 frames per second 

Essential 

4 
The system must include depth blurring based on the 

user’s distance from the Kinect device 
Essential 

5 
The blur must be run in real-time with the rest of the 
system 

Essential 

6 
Users must be able to record shadow plays created with 
the system 

Essential 

7 
Users must be able to playback saved shadow plays using 
the system 

Desirable 

8 
Users must be able to playback saved shadow plays using 
an external video player 

Desirable 

9 
A gesture recognition system must be used to trigger 
storytelling events 

Essential 

10 Gesture recognition must be robust and reliable  Essential 

11 
Users must be able to customise gestures by creating their 
own or changing the actions of gestures 

Optional 

12 
Puppets must be able to interact with objects and the 
scene using physics interactions 

Optional 

Table 3.1 – Functional system requirements 

ID Requirement Importance 

13 The system must be intuitive and easy to use Essential 

14 
UI elements such as tooltips must be clear and easily 
readable on any background 

Desirable 

15 
The on-screen puppets must move in a realistic and 
plausible way 

Essential 

16 The blur effect must look realistic Desirable 

17 Gestures must be simple and easy to perform Essential 

18 
Custom puppets, background images and music must be 
supported 

Desirable 

19 
Background elements must shift using parallax effects 

based on the user’s position 
Optional 

Table 3.2 – Non-functional system requirements 



CHAPTER 3: REQUIREMENTS AND ANALYSIS 

19 

3.2 Analysis 

Based on these requirements, the decision was made to develop the system 

using the C++ programming language for two main reasons. The first is that it 

allows the system to take advantage of Microsoft’s official Kinect SDK which 

provides user tracking via its Skeleton API. This forms the basis of puppet 

control for the system which is fundamental for an acceptable user experience. 

The second reason is that C++ is much better suited for real-time applications 

than any other language, and many Kinect projects that used C++ in the past 

have been extremely successful.  

 

Research around these requirements also revealed that much of the image 

processing can be achieved using the Cinder library. This is a C++ based 

library that provides many real-time techniques including options for blurring 

images. Using this is a great benefit to the project and will ultimately produce 

better results for the end user. The OpenGL library which provides methods for 

3D graphic rendering is also included in Cinder, which is ideal for displaying 

puppets onscreen based on the data from the Kinect. 

 

User skeletons can be obtained from the Kinect SDK which will be used to 

manipulate the onscreen puppets. The puppets themselves will comprise of 

various textures which can be mapped directly onto the skeleton bones. This 

produces a realistic looking puppet which follows the movements of the user 

and can be used in various shadow plays. This would achieve many of the basic 

requirements of the system including requirements 1 and 2, and provide a solid 

starting system that can be improved with the next three techniques. 

 

3.2.1 Real-time Blurring 

To achieve a real-time blur, an efficient blurring algorithm must be used. As 

outlined in the initial research, there are many techniques which can be used to 

achieve this effect such as box blurring, Gaussian blurring and pre-blurred 

mipmap textures. For this system, an efficient Gaussian blur will be used. 

 

This technique consists of a one-dimensional blur which is applied twice in 

two separate passes, greatly reducing the amount of processing time required. 

The primary concern for blurring is the performance that the algorithm can 

achieve. In real-time systems, the algorithm must be able to run quickly and 

not detract from the performance of the entire system, as defined in 

requirement 5.  

 

The Gaussian blur algorithm can be implemented into the system using 

OpenGL shaders, which allow image processing techniques to be applied to 

image textures. This is where the kernel will be defined and where convolution 

will take place on the individual pixels in the texture. As techniques like this 



CHAPTER 3: REQUIREMENTS AND ANALYSIS 

20 

have been used in other systems successfully, this implementation should 

satisfy the performance requirement. It should also meet requirement 16 where 

the blur looks realistic and visually appealing. However, if this technique turns 

out to be infeasible and either of these requirements cannot be met, an 

alternative blurring technique will be chosen. 

Alternatives such as a box blur would attain better performance than a 

Gaussian blur, which is critical in this system. This however is at the expense 

of realism, producing a less visually attractive blur which may cause 

requirement 16 to not be met. Based on the importance of the two 

requirements, performance takes priority over realism and a box blur may end 

up being more feasible for this system, if the Gaussian blur does not meet the 

performance requirements. 

 

3.2.2 Recording Shadow Plays 

The next area which will be addressed is the ability for users to record their 

shadow plays. There are two approaches which could be used to achieve this 

requirement. The first is to record plays into a custom file which can be read 

back in and played back using only the system. The second option would save 

the story as a video file which can be played back using external video players 

and shared with friends or uploaded to the internet. Ideally, both options are to 

be implemented, but this is time permitting. 

 

The first option is more challenging than the second but can be 

accomplished using standard C++ file streams. The system would be able to 

create new files, write all the necessary data to the file and then close it once 

done. This data would be in the form of parameters such as the 3D position of 

the user which can be used to playback the story as if the data came directly 

from the Kinect, fulfilling requirements 6 and 7. These files would be nonsense 

to anything other than this system, which would be the only way of playing 

back a saved play.  

 

These files will be read back using the same file streams and the data can 

be parsed back into their correct data types. However, this would require 

validation to ensure that invalid files would not crash the system. Another 

problem is deciding on a suitable format for the files that allows the stories to 

be played back exactly as they were recorded, and with multiple users. These 

considerations will need to be addressed to ensure the file handling is robust. 

 

The second option for recording plays is to export the story as a video file. 

For this, an external library would be needed to encode the frame data into the 

correct video format as it is being performed. This option means that the 

system is not needed to play back the story, allowing it to be shared with a 

wider audience such as the internet, fulfilling requirements 6 and 8. However, 

there are problems with this technique. For instance, video exporting is known 



CHAPTER 3: REQUIREMENTS AND ANALYSIS 

21 

to be a slow process and doing this whilst rendering live data in real-time may 

not be viable. Also, a compatible library to export data as it is seen onscreen 

may not be available for this type of project. Tests will also need to be 

performed to choose the optimum exporting settings, such as resolution, quality 

and file size. 

3.2.3 Gesture Recognition 

The third core feature that will be implemented into the system is gesture 

recognition support. Gestures will be used to trigger events, particularly whilst 

the user is recording a shadow play. These actions include being able to change 

visual elements such as the puppet and background, and also being able to 

start and stop recordings without having to go near the machine running the 

system. This will cover requirements 9 and 10. 

 

The gesture recognition system that will be implemented will use the 

dynamic time warping (DTW) algorithm explained in Section 2.4.2. Pre-

recorded gestures will be stored in an external file, which will be used as a 

reference when a gesture is performed by the user. The user’s gesture will be 

compared with each of the pre-recorded gestures to find the closest match. If a 

pre-recorded gesture matches the user’s gesture within a fixed threshold, the 

gesture will be recognised, otherwise it will be ignored. 

 

Gestures will consist of a series of frames, each made up with a set of 

parameters which can be used to identify the users pose at that frame. These 

frames will represent a short movement, such as raising both arms in the air, 

much like a short recorded shadow play. These large sets of parameters can be 

passed to the DTW algorithm to compute similarity scores between two 

different gestures. 

 

To identify gestures, the system must store previous frames where the user 

is visible. A fixed amount of frames will be stored (the same number of frames 

as a gesture) and if the number of stored frames exceeds this amount, the 

oldest frames will be removed. Once this amount is reached, the system can run 

the DTW algorithm on these stored frames and the pre-recorded gesture frames 

to identify any matches.  

 

One drawback of using gesture recognition in this system is that puppets 

can only rotate their joints in two dimensions. The puppet as a whole will be 

able to move forwards and backwards in 3D space, but they are always facing 

forwards meaning that they are projected as 2D. This limits the number of 

gestures available, as many gesture recognition systems benefit from 3D depth 

data to identify when to look for gestures, such as the user placing their hand 

in front of the rest of their body. This means that the gestures in this system 

will consist of only shoulder and elbow movements. 



CHAPTER 3: REQUIREMENTS AND ANALYSIS 

22 

 

Another problem which may be faced is the performance of the recognition. 

Adding more gestures to the system will increase the amount of calculations 

required and will reduce the performance of the entire system. In a real-time 

system like this one, this could prove to be a problem and an alternative 

method may be needed. For instance, gesture recognition could be computed 

less regularly than once every frame, reducing the processing required. 

 

To cover requirement 11, an additional recording method must be 

implemented that would allow the user to record their own gestures. This 

would also require some form of editor that would allow the user to modify 

their recorded gesture, and modify the existing pre-recorded gestures. This is a 

large amount of work and would require a lengthy period of time to implement. 

Being only an optional requirement, this will be considered at the end of the 

project if there is time remaining. 

 

3.3 Testing and Evaluation 

System testing and evaluation is one of the most important parts of any 

development project. Its main purpose is to find errors and bugs in the 

software but it also plays a big role when evaluating the system’s success. In 

the development of this system, the testing will be split into two main areas: 

unit testing and system testing. The former will verify that there are no errors 

in the code and that it performs as expected, and the latter will compare the 

system against the requirements to measure how successful it is. 

 

The majority of unit testing will take place after each new feature has been 

implemented in line with the iterative and incremental development technique 

explained in more detail in Section 4.1. Most errors will be highlighted when 

compiling the updated code, which will indicate any syntactical errors or major 

problems. The feature will then be tested appropriately to confirm that it 

behaves as planned, and also to make sure that it can handle error cases 

correctly before moving onto to the next new feature. 

 

System testing will be ongoing much like unit testing, but will feature more 

heavily at the end of development. This is when the system is analysed to 

ensure it meets all the requirements. As there are many different elements to 

this system, each particular area will need to be tested in a different way. For 

instance, gesture recognition will need to be tested for accuracy and reliability 

using various test users, whereas a questionnaire will be used to gather the 

suitability and usability of the system as a whole. Therefore, this area of 

testing varies greatly and will be broken down into the key components of the 

system.  

 



CHAPTER 3: REQUIREMENTS AND ANALYSIS 

23 

Both sections of testing are key factors in terms of evaluating the system. A 

fully working system is only half of the success criteria for this project; the 

other half is based on how well the system meets the requirements of the 

project. Using a questionnaire to get users feedback on all aspects of the system 

will provide an insight into the strongest and weakest areas of the system. The 

target audience which the questionnaire will be aimed at will be able to give 

feedback from their point of view, highlighting any areas which may have been 

overlooked. Based on their happiness, the formal requirements analysis and the 

quality of the code, well-informed conclusions can be made forming a reliable 

evaluation of the system. 



 

24 

Chapter 4:  Design

This section of the report will discuss the design of the system as generated 

from the requirements. Key sections of the system will be explained along with 

any key decisions made in these areas. The development model used 

throughout the project will also be discussed. 

 

4.1 Methodology 

For software development projects such as this one, it is beneficial to adopt a 

development model. There are a wide range of models available for all types of 

project, and each utilise different development techniques. Due to the nature of 

this project, an iterative and incremental approach was decided. As the project 

began open ended, the needs of the target audience would undoubtedly change, 

and therefore the requirements would need to be refined on several occasions. 

The model chosen is highly appropriate for this project given its short 

development cycles. 

 

The core functionality of the system can be implemented early on in 

development, followed by the addition of new features and constant 

improvement over time. For instance, the basic functionality of controlling 

puppets using the Kinect can be achieved early on, whilst extra additions such 

as blurring and gestures can be added afterwards. Cockburn (2008) explains 

that in the model, this is represented by the iterative step where working 

prototypes are produced at various stages of development, showcasing the 

latest features implemented into the system and allowing the user to give 

feedback on the system in its current state, including half developed features.  

 

The model also puts emphasis on testing after each iteration of 

development. This ensures that any new features are being implemented 

correctly and that bugs introduced are identified and fixed before moving onto 

the next iteration. An alternative model which could be used is the agile 

development model, as defined by Beck (2001). Like the iterative and 

incremental model, agile focuses on small prototypes being developed and 

reviewed by the target audience before continuing. However, each prototype 

must include a fully implemented new feature, rather than adding and refining 

what has already been developed. Due to the time constraints in this project, 

the agile model may not be as suitable as the iterative and incremental model. 

 

 

 



CHAPTER 4: DESIGN 

25 

4.2 System Overview 

Like many other graphical applications, the shadow puppet system continually 

loops and redraws images to the application window. Each redraw is known as 

a frame, where real-time applications should be able to display around thirty 

frames per second. Redrawing allows the application to display new images in 

the window, creating an animation and simulating motion of objects. In this 

system the majority of the processing is repeated each frame bar any setup or 

loading of resources.  Figure 4.1 gives an overview of how the system operates 

and what processes are involved to display and animate puppets onscreen. 

Figure 4.2 outlines the Render FBO function, which is separated from the main 

flow diagram for simplicity. 

 

 
Figure 4.1 – Flow Diagram of the system 



CHAPTER 4: DESIGN 

26 

 
Figure 4.2 – Flow Diagram of the Render FBO function 

 

Both these figures provide a high-level overview of each element in the 

system and how they interact with each other, in order to explain the 

functionality of the system as a whole. It is possible to divide the system into 

two main sections: Live Mode and Playback Mode. Both sections perform 

similar actions, but there are core differences between the two which can easily 

be identified from the flow diagrams. 

 

The first and foremost difference is the purpose of both segments. Live 

Mode takes a skeleton object directly from the Kinect sensor which must first 

be processed into compatible parameters. This is represented by the Calculate 

Joint Angles process box. In contrast, Playback Mode uses pre-processed 

parameters which are read in from a save file created with the program at an 

earlier stage. This eliminates the pre-processing stage required when using live 

data from the Kinect. Both sections then utilise the Render FBO function to 

draw puppets to the screen from the processed parameters. 

 

The other main difference between the two sections is the additional 

recording and exporting features included in the system. This is the ability to 

record parameters to create save files, and export a save file as a video file 

respectively. Recording is an optional function when in Live Mode, which takes 

the processed parameters of each skeleton and writes them to a custom save 

file. This is repeated for every frame whilst the recording option is active. 

Exporting is an optional function in Playback Mode, which renders each frame 

in a save file and writes it to a video file. This iterates through each saved 



CHAPTER 4: DESIGN 

27 

frame until the end of the file, at which point the system then returns to Live 

Mode. Both these features enhance the storytelling aspect of the application, 

and allow users to record and share their stories with their friends. In Section 

5.1.4, these features will be discussed in more detail. 

 

The system as a whole will use an element of layering when drawing 

elements to the screen. At the start of every new frame, the system clears the 

window and draws all the elements from scratch to produce animation. This 

includes the puppets as one would expect, but it also includes the background 

and user interface (UI) elements. The order in which elements are drawn is 

always the same, as seen in Table 4.1. 

 

1 Clear with black 

2 Background Colour 

3 Background Image 

4 Vignette Image 

5 Puppet FBO’s 

6 UI Elements (GUI/Tooltips) 

Table 4.1 – Order of elements drawn to the screen 

 

Each element in this list, apart from number one, has a transparent 

background to allow elements to overlap. This idea of stacked layers means 

that elements can swapped or modified without affecting the entire system. For 

instance, the background image could easily be switched without affecting the 

vignette or any other element in the drawing process. Each puppet would also 

have its own individual layer to ensure that they can be blurred independently 

of one another, and without unintentionally blurring other elements. 

 

Figure 4.3 shows a mock-up of the final application design. The background 

elements include a beige base colour, with a background image and a vignette 

image overlapping; the background image is omitted from this mock-up for 

clarity. Each puppet is then rendered on the screen and blurred accordingly. 

The mock-up shows two puppets, where one user is closer to the Kinect and 

their puppet blurred. Finally, the UI elements are drawn. This includes a 

tooltip in the top right to indicate the current mode, and the GUI menu which 

can be collapsed to the bottom left of the screen. 

 



CHAPTER 4: DESIGN 

28 

 
Figure 4.3 – Mock-up of the application window in Live Mode 

 

4.3 System Interaction 

Kinect-based applications pose an entirely new problem in terms of interaction 

with the system. For traditional desktop applications, the main input devices 

are usually a keyboard and mouse or for mobile devices, touch. These all have 

one thing in common; the user will usually be sitting in reach of the machine 

and is able to control it by interacting with it directly. However when using a 

Kinect as an input device, the user will be standing in front of the sensor and 

will not necessarily be near to the machine powering it.  

 

The Kinect was designed to use body movements to control systems and 

therefore, a traditional interface would not be suitable for the shadow puppet 

system. With this in mind, gesture support needs to be a key part of the 

project in order for the system to be intuitive and user-friendly in terms of 

handling inputs. Recognition of gestures also needs to be robust enough to 

allow any user to operate it effectively, with minimal error.  

 

As discussed in Section 2.4, there are many different algorithms that can be 

used, with some better suited to this system than others. For the gesture 

recognition in this system, a Dynamic Time Warping (DTW) algorithm was 

chosen over a Hidden Markov Model (HMM) algorithm. The main reason for 



CHAPTER 4: DESIGN 

29 

this decision was that DTW performs better than HMM with a small amount 

of training data. As this is a real-time system, the amount of training data has 

to be small to avoid impacting performance. It is also not viable to collect a 

large amount of training data for every possible case so the system needs to 

build a model from a small sample of data.  

 

In this system, there are only a few gesture-triggered user interactions 

which will be implemented, and all of them help to aid the storytelling 

experience. There are three gestures to change the puppet, the background 

image and the music and there are two gestures for sharing stories. The first of 

these toggles live recording which when enabled, writes each frame to a save 

file that only the application can read. The second gesture switches to playback 

mode. When triggered, this allows users to open a save file to be played back in 

the application. However, once in playback mode there is no gesture to return 

to live mode, as the live data is not being analysed. In Section 5.1.5, the 

gesture recognition system will be explained in more detail, including the 

implementation of a DTW algorithm and how gestures are performed and 

stored.  

 

Whilst gesture recognition is used primarily for the storytelling related 

settings, there are elements of the system that cannot be controlled by a 

gesture. These are settings that would not alter the story being told, and are 

likely only changed before or after stories have been performed. These settings 

include Kinect specific options such as whether to use Near Mode and also 

include application settings including music volume, toggling the flicker effect 

or showing/hiding gesture hints. Finally, there are options to toggle between 

live and playback modes, export a video or quit the application altogether. 

 

To change these application settings, the system needs to include a 

graphical user interface (GUI) which can be controlled using traditional input 

devices such as a keyboard and mouse. As the application is built using the 

Cinder framework, it makes sense to use the built in AntTweakBar library. 

This is a small OpenGL GUI designed for graphical applications such as this 

one. It allows parameters and settings to be easily changed whilst the 

application is running, and can be minimised as to not detract from the main 

use of the system. It also supports hotkeys to allow settings to be toggled using 

only the keyboard. 

 

The final user interaction that is required is when opening or saving files. 

Again, this is not suitable for gesture control as users are required to either 

type a filename or select a file from a set of directories. These tasks require 

more precision than gestures can provide, and can be performed much quicker 

using traditional input methods. For this reason, the shadow puppet system 

will use the Boost.Filesystem library to open a dialog window and allow the 

user to save or open a file of their choice. This is used in conjunction with the 



CHAPTER 4: DESIGN 

30 

fstream class built into C++ to read and write to the file in question, allowing 

the system to save and playback stories even if the application is closed. Using 

both gestures and other interaction elements will make the system intuitive and 

easy to use. 

 

4.4 Storytelling 

As specified in the outline of this project, the purpose of this system is to be 

able to create shadow puppet stories with the use of a Kinect. The characters 

in the stories will be controlled by the users, which will be manipulated by the 

user moving their body. The characters will appear as traditional Indonesian 

style puppets and will have hinged joints at both shoulders and both elbows 

allowing for a wide range of movements and poses.  

 

There will be two modes of the system as mentioned earlier in Section 4.2, 

Live Mode and Playback Mode. As the first receives data from the Kinect, this 

is the mode in which stories will be recorded. Stories can either be recorded to 

external save files or exported as video files. Users will be able to initiate 

recording by performing a gesture or by pressing a button in the GUI, which 

will ask the user to provide a file name and directory to store the story in. 

 

A save file will consist of many lines of parameters; each line will represent 

a frame of the story and the parameters are used to identify the position and 

pose of puppets in the scene. If multiple puppets appear in the scene at once, 

the parameters for both puppets will be stored on the same line in the file. To 

separate puppets and to identify when parameters begin and end, a series of 

character flags will be used. This also can be used to identify invalid files. 

When the user has finished recording their story, they can perform the same 

gesture or click the same button in the GUI to stop the system writing to the 

save file and to return to Live Mode.  

 

The second mode, Playback Mode, will allow users to play back the stories 

they have previously recorded. Again, this can be initiated using a gesture or 

with the GUI, and will ask the user to select a save file to open. The system 

will then read the parameters stored in the file, as identified by the flags, and 

begin to playback the story on loop. The gesture recognition system will also 

run in the background as if it were Live Mode to ensure that gestures 

performed in the recording still trigger the required actions.  

 

The final option a user will have is to convert a saved story into a video 

file. This will be activated using the GUI, which will ask the user to select a 

save file to open. Once opened, the system will begin rendering each frame of 

the story and storing them into a video file with the same name. This 

conversion will use the QuickTime library included with Cinder, which is able 

to encode videos using multiple different codecs.



 

31 

Chapter 5:  Implementation and Testing

In this section, the system will be broken down into key features and explained 

in finer detail. The techniques used to implement each aspect of the system will 

be explored and any new or novel ideas will be discussed. This section will also 

discuss the methods that will be used to test the system with respect to the 

requirements. 

 

5.1 Implementation 

There are four key areas of the system that will be discussed in this section and 

they are how shadow puppets are rendered using data from the Kinect, the 

algorithm used to produce a real-time blur, how stories can be recorded and 

saved, and finally how gesture recognition has been implemented. Any extra 

novel features are also explained at the end of the section. Before any of these 

can be explored however, the programming language and framework must first 

be discussed. 

 

5.1.1 Programming Language and Framework 

From the initial research in Section 2.3.1, it was discovered that there were two 

main programming languages and frameworks that would be suitable for this 

system. The first was Java using the Processing framework, and the second is 

C++ using the Cinder framework. Both languages have their advantages and 

disadvantages, and ultimately it was decided that the system would be written 

in C++ and Cinder. The deciding factor for this decision was the performance 

advantage of C++ as a language compared to Java, and for a real-time 

application such as this one where performance is a measure of success, this 

seemed like the most logical option. Also, Cinder is a more powerful framework 

than Processing and includes many more features which may reduce 

development time and decrease the number of additional external libraries 

needed.  

 

The other advantage of using C++ is that the system will be compatible 

with the official Kinect SDK, and can take advantage of all the features 

provided. This is in contrast to using an open source SDK such as OpenNI, 

which would have to be used if the system was developed in Java and 

Processing. Although these open source SDKs are very impressive, they would 

not match the performance of the official SDK and may be missing core 

functionality that could be crucial for the system.  

 



CHAPTER 5: IMPLEMENTATION AND TESTING 

32 

With this decided, the development environment would be Microsoft Visual 

Studio 2010 on a Microsoft Windows machine. As the end users will also be 

using Microsoft Windows machines to use the system, it makes sense to 

develop the system on the same operating system with similar hardware. The 

development machine also includes a dedicated graphical processing unit 

(GPU) in the form of an Nvidia GTX 660M, as well as an integrated laptop 

GPU. This allows the system to be tested on standard laptop hardware, but 

also on a machine with more graphical processing power, giving an indication 

of the systems efficiency. 

 

One final note is that an additional library would be needed to allow the 

Kinect SDK to be used with Cinder, which can be achieved by using 

CinderBlocks. These are small collections of libraries and code that allow 

additional features to be implemented into Cinder, usually bridging to other 

SDK’s. For this system, the KinectSDK for Cinder block will be used to 

communicate with the Kinect via its SDK. 

 

5.1.2 Rendering Shadow Puppets 

The most core functionality of the system is its ability to track users using the 

Kinect and represent them onscreen as shadow puppets. Tracking users is the 

simplest task in this section, as the official SDK provides this functionality in 

its Skeleton API. Users are represented as a set of key joints in 3D space which 

are connected by bones to create a full skeleton. These points provide enough 

information for puppets to be manipulated to mimic the user’s actions. 

 

There are multiple ways of using a Kinect skeleton to manipulate puppets; 

the easiest is to attach an individual puppet image to each bone in the 

skeleton. Figure 5.1 shows how a puppet is split into three images to allow 

movable joints at the shoulder and elbow. These are loaded in as OpenGL 

Textures and given u, v coordinates. The arm sections can be reused for both 

the left and right arm to save memory usage, and each image has an aspect 

ratio of 1:1 and a resolution to a power of two where possible. The centre of 

each image is the anchor point at which to rotate the image, and the black dots 

indicate where the images should be attached. 

 



CHAPTER 5: IMPLEMENTATION AND TESTING 

33 

   

Puppet 1 Body Puppet 1 Lower Arm Puppet 1 Upper Arm 

Figure 5.1 – The three puppet textures used for Puppet 1 
 

By attaching each of these images to a bone, there immediately becomes a 

problem. Skeletons are calculated by fitting joints to a user as they best fit 

meaning that skeletons can be all shapes and sizes to suit different users. When 

puppet textures are attached, there is no guarantee that the arms will be 

anchored correctly for everyone causing the arms to detach from the body 

completely. The same problem applies for different puppets with different body 

frames. For these reasons, images on bones would not be suitable for this 

application. 

 

An alternative technique, and the technique used in this system is to attach 

the body image to the skeleton’s waist joint, and position the arm images 

relative to this using transformations. This means that no matter what skeleton 

was produced, the puppet images will always line up correctly. Relative images 

can be easily achieved using OpenGL matrices to push and pop transformations 

onto a stack before they are drawn. This approach requires a specific set of 

transformations for each puppet, but this is reasonable for a small number of 

puppets. The image textures can be rendered onto 3D billboard objects and 

displayed in 3D space to utilise the depth information from the Kinect. 

 

The next step is to rotate the images based on the user’s movements. Joints 

are simply a point in 3D space and provide no information about the angle and 

direction they are facing so these rotations must be calculated manually. Using 

two joints, it is possible to calculate the angle of the bone in respect to the x-

axis using the std::atan2 function defined by Equation 5.1. 

 



CHAPTER 5: IMPLEMENTATION AND TESTING 

34 

     (   )  

{
 
 
 
 
 

 
 
 
 
       (

 

 
)     

      (
 

 
)           

      (
 

 
)           

 
 

 
        

 
 

 
        

                 

 

Equation 5.1 – atan2 function used in the C++ std library 

This function returns an angle in radians in the range [–     ] which can 

be used to determine the rotation at that joint. To achieve this, a 3D vector is 

created between the joint in question and the joint at the opposite end of the 

bone. For example, the upper arm angle would require the shoulder and elbow 

joints, whereas the whole body rotation requires the waist and the spine joints. 

The   and   coordinates of this newly created bone vector are used in the 

atan2 function and an angle is calculated, which can be used to rotate the 

respective image as the user moves their body. Once the rotations are applied 

and the images are translated into place, the puppet is complete and can 

accurately replicate the movements of the user, without any parts detaching. 

 

An additional feature of the system is the ability to change the direction 

that the puppet is facing. By default, the image textures represent puppets that 

are facing left but this is not very intuitive when facing the Kinect straight on. 

It also limits the storytelling abilities if the characters cannot face each other or 

turn away. There is many possibilities in how this could be implemented, for 

instance a gesture could be used. However the most intuitive option is to use 

the direction that the user is currently facing. The system therefore analyses 

the left and right hip joints of the skeleton to identify which is the closest on 

the z-axis. The joint that is the furthest away from the Kinect, i.e. the higher z 

value, indicates that the user is facing in that direction. The puppet textures 

are then flipped accordingly with respect to all transformations and rotations, 

allowing for an easy yet powerful storytelling feature.  

 

One other problem faced during the development of the system is how 

puppets should react at varying depths. To represent a puppet moving away 

from the screen and closer to a light source, it makes sense that the puppet 

should increase in size and blur, but this could happen either when the user 

moves closer or farther from the Kinect sensor. Due to the technology behind 

the Kinect, users are best tracked when they are further away from the device 

and for that reason, it was decided that the puppets should grow when the user 

gets closer to the Kinect. This gives the impression that the Kinect is the light 

source. Another advantage of this approach is that puppets will be most in 



CHAPTER 5: IMPLEMENTATION AND TESTING 

35 

focus as the user moves further back, allowing more room for multiple users to 

interact with the system without hitting one another. 

 

5.1.3 Real-time Blurring 

Achieving real-time blurring is the possibly the biggest challenge for this 

system. Blurring is usually a post-processing technique due to the computation 

and time required, so developing an aesthetically appealing real-time blur was 

not going to be a simple task. Fortunately there are a few techniques that can 

be used to achieve such an effect and these were discussed in Section 2.3. 

 

In this system, a two-pass Gaussian blur has been implemented. This is 

where a one dimensional filter is first applied horizontally, followed by the same 

filter applied vertically to the result. Compared to a two dimensional Gaussian 

filter, the amount of processing and time required to produce the effect is 

greatly reduced which is vital when working with real-time applications. 

 

The filter itself is implemented in the OpenGL Shading Language (GLSL) 

as a vertex and a fragment shader. The two shaders work together on the 

Graphical Processing Unit (GPU), a standard technique used in image 

processing to create special effects. The vertex shader converts the texture as it 

is seen onscreen into a 2D coordinate system of pixels, which can then be 

passed onto the fragment shader. This is where the Gaussian blur filter is 

defined and applied. For each pixel that is visible on screen, its RGBA pixel 

data is modified using the Gaussian filter and its neighbouring pixels. After all 

the pixels have been filtered, the final texture is returned. 

 

To improve performance further, the kernel for the Gaussian filter is pre-

calculated and stored in the shader file. Weight values for the kernel are 

calculated using the one dimensional Gaussian equation defined in Equation 

5.2. In this system, the kernel size is 21x1 with a standard deviation ( ) of 5, 

which can be visualised in Figure 5.2.  

 

 ( )  
 

√    
 
  
  

     

Equation 5.2 – One dimensional Gaussian function used in the system 

 



CHAPTER 5: IMPLEMENTATION AND TESTING 

36 

 
Figure 5.2 – Graph visualising the Gaussian filter kernel used in the system 

 

The fragment shader is also capable of increasing and decreasing the 

amount of blur to apply to the texture. To achieve this, a dynamic uniform 

variable is defined which can be calculated using the depth value of the user’s 

skeleton and passed to the shader. This is used as an offset to determine how 

many neighbouring pixels to be used in the filter. An extract from the fragment 

shader can be seen below. 

 

1 

2 

3 

4 

5 

6 

 

 

 

7 

8 

9 

10 

vec4 sum = vec4( 0.0, 0.0, 0.0, 0.0 ); 

vec2 baseOffset = -10.0 * sampleOffset; 

vec2 offset = vec2( 0.0, 0.0 ); 

 

for( int s = 0; s < 21; ++s ) { 

 sum += texture2D(  

tex0,  

gl_TexCoord[0].st + baseOffset + offset 

).rgba * weights[s]; 

 offset += sampleOffset; 

} 

 

gl_FragColor = sum; 

 

Lines 1-3 in this extract declare three variables: sum which is the final pixel 

value, baseOffset which is the starting pixel offset and offset which is the 

current offset for that weighting. The sampleOffset value is the uniform 

variable calculated from the user’s depth value. As the function iterates 

through the weights in the kernel, defined earlier as weights[21], the pixel’s 

RGBA values are modified using neighbouring pixels from tex0 and 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

W
e
ig

h
t 

Pixel 



CHAPTER 5: IMPLEMENTATION AND TESTING 

37 

gl_TexCoord[] and are stored in the sum variable (line 6). The current offset is 

incremented using the dynamic sampleOffset. The final pixel value stored in 

sum is then assigned to the texture on line 10. 

 

Both shaders are loaded into the program during start up and stored in a 

Cinder GLSL object so they can be called at any time. However to use a two-

pass filter, each texture must be stored in an intermediate texture in order to 

be blurred twice. This was achieved using OpenGL Frame Buffer Objects 

(FBO). A new FBO is created at start-up with a resolution of 1024 by 768 

pixels, the same size as the application window’s default resolution. If the 

application window does not match this resolution, the FBO texture is scaled 

up or down to fill the windows height. 

 

As each skeleton is processed and compatible parameters are calculated, the 

renderSceneToFbo function is called. It is in this function that all the puppet 

textures are drawn but instead of drawing directly to the screen, each texture 

is blurred horizontally using the filter and drawn to an FBO object. This object 

contains a texture of the complete half-blurred puppet in the scene which is 

stored and can be drawn later on. The FBO object’s texture is then blurred 

vertically completing the full Gaussian blur effect, before being drawn to the 

screen. This function is called for each skeleton the Kinect has detected, 

causing multiple FBO textures to be drawn on top of each other. The final 

results of the system can be seen in Figure 5.3. 

 

 
Figure 5.3 – A puppet in normal and blurred states 

5.1.4 Saving Stories 

There are three main components of the system to enhance the storytelling 

experience for the user; the first of these is recording. Whilst the application is 

in live mode, the user has the option to record their movements and save them 

to a custom save file. These files are stored in a save directory where they can 

be copied and sent to friends, who can play them back using their copy of the 

system. The save files are automatically given a “.save” extension. 

 



CHAPTER 5: IMPLEMENTATION AND TESTING 

38 

The files themselves are custom to the program and contain all the 

necessary information required to playback a story, without the need for a 

Kinect at all. Each line in the file represents a frame of the recording. On each 

line, the frame is represented as a list of parameters which correspond to the 

parameters used to draw a puppet. Many puppets parameters can be stored on 

the same line using a character flag system. An example frame would be as 

follows (where parameters have been reduced in precision for legibility): 

 

# -0.02 -0.18 1.63 0.03 1.60 -0.90 -1.49 1.11 0 * 

 

Each line starts with a ‘#’ character, which tells the system that the 

following information represents a puppet. There are eight floating point 

numbers depicting the puppets position and pose and one Boolean parameter 

indicating the direction the puppet is facing. At the end of each line, or if a 

frame does not have any visible puppets, a ‘*’ character is used. For frames 

with multiple puppets, the following format would apply: 

 

# <puppet 1 parameters> # <puppet 2 parameters> * 

 

To start recording a story, users can either click a button on the GUI, press 

the ‘r’ key or they can perform a gesture. This will bring up a save dialogue 

which allows a file name to be chosen for the save file. If the name is valid, the 

system will begin recording any new live frames until the recording is stopped 

with the GUI or gesture. The top right dialog reads “Recording” and a small 

red dot appears in the top right of the window to indicate when the system is 

recording. Once stopped, the system closes the save file and returns to Live 

Mode. 

 

The second storytelling component of the system is its ability to read in 

these save files and playback the recorded story. To load a file, the user must 

enter Playback Mode by clicking on a button in the GUI or by pressing the ‘p’ 

key. This brings up an open file dialog where users can browse their file system 

to find the save file they desire. For convenience, the dialog only display files 

with the extension “.save”, and will start in the default save directory. If the file 

selected is valid, it is read in line by line, the parameters are processed and 

parsed and the frames are stored in a vector object. If the file is not valid 

however, an exception is thrown during processing and an error message is 

displayed. 

 

Once all the processing is completed, the system renders the puppets frame 

by frame using the same FBO system as Live Mode. A frame counter 

increments every frame and when it equals the size of the frames vector, i.e. the 

playback has reached the end, the counter resets and the playback loops back 

to the beginning. To reduce file size, gesture information is not stored in the 



CHAPTER 5: IMPLEMENTATION AND TESTING 

39 

save files so they are computed and recognised in the same way as if the data 

was live, retaining all aspects of the story. 

 

An option that was considered during the design of the recording and 

playback features was whether to auto name save files with the current date 

and time. The obvious benefit of this approach is that users would not need to 

interact with the system using a mouse and keyboard to choose a file name, 

and would be able to control the system entirely with gestures. This is good for 

usability but has other drawbacks. For instance, all save files will have 

meaningless names and choosing the correct story to share with friends would 

prove difficult. The files themselves also have timestamps built in; therefore a 

meaningful file name would be more appropriate. Furthermore, the system 

would not know which file to load for playback if the user does not get to 

choose. It was for these reasons that keyboard and mouse interaction had to be 

included in the system for these file handling situations. 

 

The third and final storytelling feature is the ability to render and export 

stories as video files. This option allows stories to be uploaded to the internet 

or shared with friends who do not own a copy of the system. Unlike the other 

two methods, video exporting can only be initialised by pressing a button in 

the GUI; there is no gesture to trigger this method. Initially, the system was 

developed to export video frames while in Live Mode, much like the current 

save file recording system. However upon testing this feature, the performance 

of the system dropped to unusable levels and the feature had to be redeveloped. 

Instead, it was decided that the system would only be capable of exporting 

videos from save files created in advance. This retains the performance of the 

system but still keeps the feature included. 

 

When video exporting is activated, the system enters a special mode similar 

to Playback Mode where the user must choose a save file to load. It also 

creates a new “.mov” file with the same file name where the video will be 

written to. The system plays back the file like normal but also records each 

frame to the video file as it is seen on screen, before adding some user interface 

(UI) elements on top. This means that the video resolution will match that of 

the application window and everything, including gestures, will be preserved. 

When the playback reaches the end, the system closes the video file and 

returns to Live Mode. 

 

Video exporting is handled using the QuickTime Cinder Block included in 

the Cinder framework. Videos are encoded using the standard H.264 codec at 

75% quality, which ensures that videos files are always small in size whilst still 

being visually appealing. The reasoning for these decisions is explained in 

Section 6.5 They are also set with a frame rate of 30 frames per second, 

meaning that videos will play smoothly whatever hardware they are recorded 

or played on. 



CHAPTER 5: IMPLEMENTATION AND TESTING 

40 

 

5.1.5 Gesture Recognition 

As mentioned in Section 4.3, the algorithm implemented in the system for 

gesture recognition is Dynamic Time Warping (DTW). This algorithm takes 

two n-dimensional time series’ and produces a similarity score for the pair. The 

similarity score is lower when the two time series’ are most similar. In this 

system, multiple gesture time series’ are stored in an external file, and they are 

compared in turn to a live time series’ captured by the program. 

 

The external gesture file can be closely compared to a save file used for 

recording and playback of stories. The gesture file contains multiple lines of 

parameters, where each line represents a frame of gesture. In this system, 

gesture detection is only concerned with the rotation of each joint of the 

puppet; the 3D position of the puppet is irrelevant for these gestures. Therefore 

only 4 parameters are required for each frame of a gesture. These represent the 

shoulder and elbow angles for both arms in radians. Each gesture is 100 frames 

long and starts with an identifier line. The identifier line contains a single 

string with no spaces, which the system uses to identify what action the 

gesture should trigger. Anything on this line after the string is considered to be 

a comment. The following code is an example of a gesture file. 

 

1 

2 

3 

4 

 

100 

101 

102 

103 

104 

105 

 

201 

202 

next_puppet #both_arms_down 

1.75182 -0.384692 -1.60668 0.310605 

1.75182 -0.384692 -1.60668 0.310605 

1.75233 -0.384207 -1.60638 0.309992 

… 

2.91348 0.0996509 -2.82148 -0.253671 

2.91348 0.0996509 -2.82148 -0.253671 

toggle_recording #leftarm_up_rightarm_down 

1.7269 -0.0223778 -1.73376 0.180784 

1.7269 -0.0223778 -1.73376 0.180784 

1.72722 -0.0227457 -1.73353 0.180912 

… 

0.616007 -0.249349 -2.8262 -0.0664804 

0.616007 -0.249349 -2.8262 -0.0664804 

 

In this example there are two gestures: next_puppet and 

toggle_recording, which can be identified by their identifier lines (1 & 

102). As stated, any characters after the gesture identifier string are ignored by 

the program and treated as comments. There are 100 lines of parameters 

following the identifier lines which represent a gesture as a 4-dimensional time 

series. The same gesture identifier can appear twice in the file, in which case 

there would be a higher chance of matching that gesture during recognition.  

 



CHAPTER 5: IMPLEMENTATION AND TESTING 

41 

As the system starts up, the gesture file is read and the parameters are 

loaded into memory for easy access. The initial plan for gestures was to have 

an ‘always-on’ recognition system where the last 100 frames are constantly 

stored and analysed, but this caused catastrophic performance loss and 

misrecognition of gestures and the idea was abandoned. Instead, a combination 

of pose and gesture recognition has been implemented. 

 

In the final implementation, a user must first perform a pose to indicate 

that a gesture is about to be performed. This pose is checked for every frame 

and if it is detected in all of the past 100 frames, the system begins gesture 

recognition. A small bar appears at the top of the screen to indicate if the pose 

is being detected. In this system, the pose is the user holding both arms out 

straight at a 90 degree angle to their body. 

 

After a successful pose, the next 100 frames are recorded to be compared 

with the stored gestures, and a prompt appears on the screen to inform the 

user of this. Once 100 frames have been collected, the system runs the DTW 

algorithm on this and the pre-recorded time series’. If the lowest scoring gesture 

is below a certain threshold, the gesture has been recognised and its associated 

action is carried out. However if no score is below the threshold, no actions are 

carried out. In both cases, the user is informed what the system has interpreted 

from the recognition. This entire process can be seen in Figure 5.4, where the 

next background gesture is being performed. 

 

 
Figure 5.4 – Left: A puppet performing the gesture pose. Middle: A puppet performing a 

gesture. Right: The successful gesture recognition 

 

The algorithm itself is fairly simple and utilises Euclidian distances to 

compute similarity. It is explained in more detail in Section 2.4.2. Each gesture 

from the external file is compared to the live time series and similarity scores 

are calculated for each pair. However, this implementation has been slightly 

modified to dynamically weight each parameter in terms of how important they 

are in each gesture. Joints with higher variance over the time series are 

considered to be more important in the recognition.  

 

Weights are calculated for each gesture from the external file and used in 

the distance measure function. This calculation can be seen in the code 



CHAPTER 5: IMPLEMENTATION AND TESTING 

42 

example below. g represents the gesture as a 2D array of frames and 

parameters. 

 

1 

2 

3 

4 

5 

6 

vector<float> weights; 

int noFrames = g.size(); 

int noParams = g[0].size(); 

for (int i=0; i<noParams; i++) { 

  weights.push_back(abs(g[noFrames-1][i]-g[0][i])/noParams); 

} 

 

For each parameter in the gesture, the value at the first frame is subtracted 

from the value at the last frame and its absolute value is taken. It is then 

normalised by the total number of parameters used in the gesture.  

 

Each time the similarity function is called, both gesture vectors and the 

newly created weights vector are passed as parameters. From here, a simple 

weighted Euclidian distance equation is used to generate a similarity score 

which can be used in the DTW algorithm. This calculation can be seen in 

Equation 2.3. The benefit of weighting the parameters is that static joints are 

less likely to cause errors and joints with a higher variance will have a greater 

effect of the score. 

 

An added feature of the system is the ability to display gesture hints on 

screen. This is where a preview of each gesture is drawn to the side of the 

screen to inform the user which gesture to perform for each action. This can be 

seen in Figure 5.5, along with the GUI. The purpose of this is to aid the 

usability of the system by having an easy way to learn the gestures in the 

system. Gesture hints are toggled with a button located in the GUI and can be 

seen only in Live Mode. As each gesture starts with the same pose, the gesture 

hints are a still image of a puppet in the final position of the gesture, 

accompanied by a human friendly name of the gesture action. 

 

 
Figure 5.5 – Gesture hints displaying previews of the different gestures available in the 

system 



CHAPTER 5: IMPLEMENTATION AND TESTING 

43 

Each gesture hint is rendered using a small FBO where the puppets are 

drawn in 3D. This allows the puppets to retain their hierarchical nature 

allowing them use the same transformation and rotations as if they were live. 

The FBO stores the 3D scene as a 2D texture which can easily be rendered to 

the screen as a UI element. Duplicate gesture actions are only drawn once to 

save screen space, and the first gesture for that action is chosen to be rendered. 

Gesture hints remain visible on the screen until they are switched off via the 

GUI.  

 

5.1.6 Other Features 

The core features of the system have now been covered, but there are a few 

extra points worth explaining which will be covered in this section. The first of 

these features is background music. To keep the traditional Indonesian shadow 

puppet feel, the system can play various Balinese Gamelan music tracks whilst 

a story is being performed. These are “.mp3” files included in the systems music 

directory which are identified and loaded during start up. 

 

Music can be adjusted in the GUI using the volume option. The volume has 

a range of 0 to 1 and steps up and down in values of 0.1. AntTweakBar 

provides multiple ways of adjusting this value including increment and 

decrement buttons, a ‘RotoSlider’, custom text entry and keyboard shortcuts in 

the form of the ‘+’ and ‘-’ keys. If the volume is set to zero, the music pauses 

until it is enabled again. The systems GUI can be seen in Figure 5.6. 

 

 
Figure 5.6 – The AntTweakBar GUI used in the system 

 

Tracks loop indefinitely unless the volume is set to zero or the next_track 

gesture is performed. If this happens, the system selects the next track found in 

the music directory and begins to play it on loop like the previous track. This 

playlist behaviour continues until the last track is reached, where the 

subsequent track would be the track at the beginning of the playlist.  

 



CHAPTER 5: IMPLEMENTATION AND TESTING 

44 

The system is designed so that any “.mp3” file found in the music directory 

will be loaded and played in the playlist. This means that custom background 

tracks can be added to the folder to create custom stories. This idea could also 

be used to add narration tracks to stories which allow users to act out the story 

as it is being described. 

 

As music switching is controlled using gestures, any saved stories will retain 

the intended behaviour, providing that music is already switched on and the 

correct track for the story is already playing. However, music cannot be added 

to exported videos as the QuickTime libraries included in Cinder do not 

support audio output in videos. For music to be played with exported videos, 

the video file must either be edited with external software to add an audio 

track, or played at the same time as a music track. This downside is not ideal 

but unavoidable without using an alternative video exporting library.  

 

A smaller feature in the system is a flicker effect. This is designed to 

simulate the light source, traditionally a candle, flickering behind the screen. 

The flicker effect can be toggled with a button in the GUI, but is enabled by 

default. The amount of flicker is calculated using a sin wave, which has added 

noise generated by random numbers. This number is then applied to the alpha 

channel of the background gradient, making it more or less transparent and 

revealing more or less of the black background underneath. Although it is a 

subtle effect, it adds to the realism of the application and makes stories more 

believable.  

5.2 Testing 

Systems of a graphical nature are typically much harder to test than any other 

type of system. Despite this, there are more concrete tests that can be 

performed to evaluate the success of the system in other areas. The testing of 

this system will look at each feature in turn, evaluating them in the most 

appropriate way. This could include unit tests which are used to evaluate the 

programming and find any errors or malfunctions in the written code, or they 

could consist of system tests which compare the system to the requirements 

specified in Section 3.1. The features which will be analysed include the gesture 

recognition system and save file handling amongst many others.  

 

As the system was built using an iterative and incremental development 

technique as described in Section 4.1, testing occurred during the entirety of 

the development process. This means that as new features and methods were 

implemented into the system, they were tested and approved before any further 

development commenced. This technique assumes that more bugs are 

discovered and fixed earlier in the development process and as a result, fewer 

bugs will carry through to the final testing phase where they may have 

propagated to other areas of the system.  



 

45 

Chapter 6:  Results and Discussion

In this section, the system will be evaluated to identify areas of success and any 

areas where the system could be improved. The findings of this evaluation will 

be presented in suitable formats and accompanied by a discussion on the 

subject in question. There will also be a discussion on the future of the project 

and how it could be expanded to include more functionality. 

 

6.1 User Feedback 

The first area of evaluation is to test how fit for purpose the system is. This 

involves getting the opinions of the target audience who will evaluate the 

system from their point of view, and will also highlight any issues they may 

face when using it. The easiest way of conducting this research is to use a 

questionnaire to record their experience with the system.  

 

11 users took part in the research and completed the questionnaire, with 

ages ranging from 18 to 21. The questionnaire itself featured seven quantitative 

questions and an additional comments box. The questions each had five 

answers ranging from “poor” to “excellent” to assess how successful they 

perceived each aspect of the system to be. These are listed in Table 6.1 and the 

results can be seen in Figure 6.1, along with the standard error. 

# Question 

1 How accurately does the system track your movements? 

2 How intuitive is the system? 

3 How would you rate the performance and speed of the system? 

4 How would you rate the visual appearance of the entire system? 

5 How would you rate the visual appearance of the puppet blur? 

6 How accurately does the system recognise your gestures? 

7 How suitable is this system for creating and sharing stories? 

Table 6.1 – Questions asked in the questionnaire 

 



CHAPTER 6: RESULTS AND DISCUSSION 

46 

 
Figure 6.1 – Graph visualising the average response for each question in the questionnaire 

 

The responses from the questionnaire were highly positive with average 

scores ranging from 75% to 93%. Test users agreed the system tracked their 

movements accurately, that it was visually appealing and that the puppet blur 

was aesthetically pleasing. However, the lowest scoring questions reveal that 

they suggest the system could be more intuitive, that the storytelling aspect 

could be improved and that the gesture recognition was not always accurate. 

 

One test user suggested that the storytelling aspect could be improved with 

the addition of narration or onscreen text. In the current system, there is no 

easy way to add text or narration to a story. This is an excellent suggestion 

and something which would greatly improve the user experience of the system. 

Currently, narration can be added by pre-recording a voiceover audio track and 

adding it to the music folder of the system. This can then play in the 

background as the user acts out their story. Onscreen text is however not 

possible in the current system as it would require a save file editor, and this 

was outside the scope of the project. 

 

Another test user noted that when playing back a story using the system, 

the character and background may not always be the same as they were when 

the story was first recorded. This is a valid point and this is due to the save 

file. Currently, save files do not store information such as the starting puppet 

and background; only the parameters used to display puppets. This missing 

information means that the system does not know which puppet textures to use 

and therefore defaults to what is currently selected, which may be incorrect. To 

overcome this, additional information would need to be included in save files, 

altering the design of the file and the way it is written to and read back. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7

A
v
e
ra

g
e 

S
c
o
re

 

Question Number 



CHAPTER 6: RESULTS AND DISCUSSION 

47 

Making this change would be beneficial and therefore would be included in the 

first update of the system. 

 

As well as the questionnaire, a lecture and demonstration of the system was 

given to a group of prospective university students. In the session, the students 

were given a chance to find out about the details of the system and try it out 

for themselves. The students were impressed by the entire system and were 

enthusiastic to get up and have a go. From the session, the students stated 

that they enjoyed interacting with the system and were generally positive 

about their experience. 

 

On the whole, all the test users and the prospective students enjoyed 

testing the system and the feedback they gave is extremely beneficial, both for 

evaluation purposes and also to identify areas of the system which need to be 

improved. The lower scores for intuitiveness could be attributed to a lack of 

instructions in the application itself. For instance, a tooltip to inform users how 

to initiate the gesture recognition could help to improve this score. Also, the 

lower score for gesture recognition accuracy could be increased by adding more 

training data to the system, or by allowing users to add their own gestures. 

However as the feedback was generally positive, it can be assumed that the 

users were generally happy and that the system is successful with its target 

audience. 

 

6.2 System Performance 

One of the main requirements outlined for this project was that the system 

should be able to run at a minimum speed of 30 frames per second. This 

performance should be maintained throughout the entirety of the system and 

will allow the system to be classified as real-time.  

 

The system’s performance was tested using two different methods. The 

Cinder framework includes a method which returns the average frames per 

second achieved by the system, and this would be used as the first testing 

method. In addition, the video recording software FRAPS can also display the 

current frame rate of the system and would therefore be used as the second 

testing method.  

 

Using both methods, the frame rate was recorded for the system in both 

Live Mode and in Playback Mode to compare and contrast any differences 

between the two modes. It was recorded at the standard window resolution of 

1024 by 768 pixels, and also at a much higher resolution of 1920 by 1080 pixels 

to identify if the system could cope when scaled up. The results of these tests 

are shown in Table 6.2. 

 



CHAPTER 6: RESULTS AND DISCUSSION 

48 

Mode 
Window Resolution 

(pixels wide x pixels tall) 
FPS Achieved 

(Cinder) 
FPS Achieved 

(FRAPS) 

Live Mode 
1024 x 768 29.98 – 30.01 30 

1920 x 1080 29.98 – 30.01 30 

Playback Mode 
1024 x 768 29.98 – 30.01 30 

1920 x 1080 29.98 – 30.01 30 

Table 6.2 – System frame rate in different modes at different resolutions 
 

It is worth noting that these results were collected on the development 

machine which is a laptop featuring a quad core processor and a dedicated 

Nvidia GTX 660M graphics card. As the results show, the system maintained a 

constant 30 frames per second in all cases which is the maximum rate set for 

this system. This maximum limit ensures that stories are consistent even on 

more powerful machines. These results confirm that the system is able to run 

in real time and has achieved the performance requirement, at least on this 

machine. 

 

To further test this theory, the system was tested on the same machine in 

the same conditions but without the dedicated graphics card. Instead the 

integrated graphics on the Central Processing Unit (CPU) chip would be used; 

in this system the CPU was an Intel i7-3610QM. The results of these tests were 

identical to the ones in Table 6.2, providing further proof that the system is 

able to run in real time on modern computer systems.  

 

As an additional experiment, the frame rate restriction in the system was 

removed to see the maximum frame rate that could be achieved. Again, the 

same test conditions were used with the same window resolutions and same 

benchmarking techniques. The system results using the dedicated graphics card 

are shown in Table 6.3, whilst the results for the integrated CPU graphics are 

in Table 6.4. 

Mode 
Window Resolution 

(pixels wide x pixels tall) 
FPS Achieved 

(Cinder) 
FPS Achieved 

(FRAPS) 

Live Mode 
1024 x 768 60 60 

1920 x 1080 60 60 

Playback Mode 
1024 x 768 60 60 

1920 x 1080 60 60 

Table 6.3 – System frame rate without a frame rate restriction using a dedicated graphics 
card 



CHAPTER 6: RESULTS AND DISCUSSION 

49 

 

Mode 
Window Resolution 

(pixels wide x pixels tall) 
FPS Achieved 

(Cinder) 
FPS Achieved 

(FRAPS) 

Live Mode 
1024 x 768 73 75 

1920 x 1080 37 37 

Playback Mode 
1024 x 768 72 73 

1920 x 1080 37 37 

Table 6.4 – System frame rate without a frame rate restriction using integrated graphics on 
a CPU chip 

 

These results are interesting but encouraging. On the dedicated graphics, 

the system achieved a frame rate of 60 frames per second in all cases, indicating 

that the hardware has its own built in restriction and could achieve potentially 

higher scores. Regardless, this is double the requirement for the system and is 

extremely impressive. On the other hand, the results from the CPU chip are 

much more varied. For the default window resolution, the system achieved an 

average of around 73 frames per second which again is very impressive. For the 

higher resolution, the frame rate dropped to 37 frames per second which is still 

above the target outlined in the requirements. 

 

The development machine used for these tests is around two years old 

which resembles the performance one should expect from a reasonably modern 

computer. Considering that the system achieved over 30 frames per second in 

every test is a good indication that it would be capable of running on any 

machine with similar hardware. It also implies that it would still achieve real-

time results on older machines and less powerful machines at the default 

resolution. Overall, these tests prove that the system can run very efficiently 

and therefore succeeds on the performance requirement. 

 

6.3 Gesture Recognition 

One of the key features of the system is the gesture recognition algorithm. 

Gestures are used to trigger various different storytelling actions and one of the 

requirements for this is that it should be robust and reliable. If the system 

cannot recognise gestures accurately, users will become frustrated and confused 

with the system. As one of the main interaction methods, it is vitally important 

that the gesture recognition in this system performs well. 

 

A set of test users were asked to perform multiple different gestures to 

evaluate how accurately the system can recognise them. Variation in how 



CHAPTER 6: RESULTS AND DISCUSSION 

50 

gestures are performed can affect the systems classification, and this can be 

analysed by using an assortment of different test users. It will also indicate how 

suitable the training data is at representing a wide range of users. The test 

users performed at all of the five pre-recorded gestures and the systems 

classification was recorded. The results of this test can be seen in Table 6.5. 

  

To display the results of this test, a confusion matrix has been used. 

Confusion matrices are commonly used to visualise the performance of an 

algorithm by displaying how data is classified into different gesture classes and 

whether this matches the actual gesture class or not. In this confusion matrix, 

the actual gesture is represented on the vertical axis, and the predicted gesture 

on the horizontal axis. Each number in the matrix represents the count of that 

classification made by the system. To achieve perfect accuracy, the matrix 

would consist of all zero’s apart from the diagonal from the top left corner to 

the bottom right, indicating the system classified every gesture correctly. 

 

t
o
g
g
l
e
 

r
e
c
o
r
d
i
n
g
 

n
e
x
t
 
t
r
a
c
k
 

n
e
x
t
 
p
u
p
p
e
t
 

n
e
x
t
 

b
a
c
k
g
r
o
u
n
d
 

t
o
g
g
l
e
 

p
l
a
y
b
a
c
k
 

N
o
 
g
e
s
t
u
r
e
 

toggle_recording 7 2 0 0 0 3 

next_track 0 9 0 0 0 3 

next_puppet 0 0 10 0 0 2 

next_background 0 0 0 11 0 1 

toggle_playback 0 0 0 0 8 4 

No gesture 0 2 0 0 0 10 

 

Table 6.5 – Confusion matrix for gesture recognition 

 

The overall accuracy for the gesture recognition in this system was 76%, 

calculated by taking the number of correctly classified gestures and dividing it 

by the total number of gestures performed. This is a high accuracy score and 

indicates that the gesture recognition in this system is reliable for a wide range 

of users. The DTW algorithm also managed to perform well when gestures were 

performed slower or quicker than the pre-recorded reference. For the most part, 

misclassification of gestures resulted in the system not detecting a gesture 

rather than it incorrectly performing a different gesture. This is a positive 

outcome which implies that the system is unlikely to confuse users if the 

recognition fails. 

 



CHAPTER 6: RESULTS AND DISCUSSION 

51 

One point which was realised during testing is that gestures where the arms 

are lowered to the side of the user’s body resulted in a misclassification. This 

could be due to the fact that the Kinect is unable to distinguish between the 

arm and the body in this situation and therefore assumes the arm is in a 

different location. By ending the gesture without touching the side of the body, 

the performance of the recognition system increased, supporting this theory. 

Alternative gestures could overcome this problem but due to the limited 

number of gestures using only four joints in a two dimensional space, the 

current implementation is sufficient. 

 

The results of this test are positive, with roughly three out of four gestures 

being correctly recognised. Although this is not perfect, it is still an 

encouraging score suggesting that the gesture recognition in this system is 

reliable for its purpose. The DTW algorithm is effective with a small amount of 

reference gestures and it can successfully recognise gestures even if they are 

performed at a different speed. There is room for improvement but based on 

these tests, requirement 10 can be seen as a pass. 

 

6.4 File Handling 

One of the most vulnerable areas of the system is reading and writing external 

files. This not only includes save files, but also the gesture file, music tracks 

and other assets such as images. Corrupt, invalid or missing files will all cause 

the system to behave unexpectedly if not dealt with properly, which is why this 

area must be tested thoroughly to avoid any errors.  

 

The system is designed to recover from scenarios where files cannot be 

processed, and will show an error message to the user wherever possible. These 

types of errors are easy to avoid by putting the system in the state it was in 

before the error occurred. However in cases where the external resources are 

loaded during the start-up process, the system will unlikely be able to continue 

but should be able to recover and avoid crashing. For these situations, the 

system is simply designed to display an error message when possible, and then 

exit.  

 

The most practical way to test file handling in the system is to run the 

system with invalid or missing resources. The first file handling tests will check 

whether the system can avoid crashing with missing resources. The first test 

involved removing the assets folder, including all images and music files to see 

how the system reacted. As expected, the system could not find the files and 

then exited. For the second test, just the music folder was removed from the 

directory. This time, the system displays an error message and then exits. The 

third test saw the removal of the gesture file and as expected, the system 



CHAPTER 6: RESULTS AND DISCUSSION 

52 

displays an error message and exits. Finally, individual files were removed from 

the assets and music folders and again the system closed as expected. 

 

The next tests which can be performed are for present but invalid files. 

There are two types of file which may become invalid and cause problems when 

being read by the system: the gesture file and save files. Firstly, the gesture file 

will be tested. Table 6.6 lists all the cases where the gesture file could become 

invalid, and how the system responded when the file was used as an input.  

 

Test Case Observed Outcome Pass / Fail 

> 4 parameters per frame 
The extra parameters are ignored 
and the system continues as 
normal 

Pass 

< 4 parameters per frame 
Invalid file error message 
displayed and system exit 

Pass 

Parameters with invalid data 
type 

Invalid file error message 
displayed and system exit 

Pass 

> 100 frames 
The extra lines are ignored and 
the system continues as normal 

Pass 

< 100 frames 
Invalid file error message 
displayed and system exit 

Pass 

Missing gesture action ID 
Invalid file error message 
displayed and system exit 

Pass 

Multiple gesture action ID 
lines 

Invalid file error message 
displayed and system exit 

Pass 

Invalid gesture action ID 
Invalid file error message 
displayed and system exit 

Pass 

Empty file 
Invalid file error message 
displayed and system exit 

Pass 

Table 6.6 – Test cases for invalid gesture files 

As the results of these tests show, it is clear to see that the system can 

handle any form of invalid gesture file when it is read in. In cases where valid 

data is read but extra data is also present, the system is able to process the 

data it needs, discard anything else and continue as normal. This reduces the 

probability of the system being unable to continue, and also reduces the 

likelihood of the user seeing an error message. For all other cases where the 

data cannot be processed and used, the system has to exit and does so after 

displaying an error message to the user in a dialog box. 

 

Similar tests are required for save files, which are loaded in when the user 

enables Playback Mode. As these files are not loaded during the start-up 



CHAPTER 6: RESULTS AND DISCUSSION 

53 

process, the system should be able to return to a stable state if an invalid file is 

read. Therefore the system should not experience any unexpected crashes or get 

stuck at a deadlock state. Like gesture files, Table 6.7 displays all the test cases 

for save files that the system should be able to cope with. 

 

Test Case Observed Outcome Pass / Fail 

> 9 parameters per frame 
Invalid file error message 
displayed 

Pass 

< 9 parameters per frame 
Invalid file error message 
displayed 

Pass 

Invalid data type for first 8 
float parameters 

Invalid file error message 
displayed 

Pass 

Invalid data type for 9th  
Boolean parameter 

Invalid file error message 
displayed 

Pass 

Missing ‘#’ flag 
Invalid file error message 
displayed 

Pass 

Missing ‘*’ flag 
Invalid file error message 
displayed 

Pass 

Blank lines 
Invalid file error message 
displayed 

Pass 

Empty file 
Invalid file error message 
displayed 

Pass 

No file selected 
Invalid file error message 
displayed 

Pass 

Table 6.7 – Test cases for invalid save files 

 

When presented with an invalid save file, the system is designed to remain 

in Playback Mode but to display an error message to the user. This means the 

user is aware that an error occurred, and also ensures that the system doesn’t 

go into another state and start another task such as reading live data from the 

Kinect. The results of these tests show that this error message is correctly 

displayed for all save files which are not in the specified format. Regardless of if 

valid parameters are present or not, the system still displays the error if the 

flags do not match what is expected.  

 

For file handling in general, the previous tests have proved that the system 

can handle any type of input, whether it is corrupt or missing altogether, 

without crashing or reaching a deadlock state. Wherever possible, the user is 

informed that an error has occurred and for unrecoverable situations, the 

application safely exits. These error situations should rarely be reached unless 



CHAPTER 6: RESULTS AND DISCUSSION 

54 

files are missing, corrupted or tampered with but if they are, the system will be 

able to deal with it effectively. 

 

6.5 Video Exporting 

Video exporting is a compromise between video quality and file size. As 

exported videos would most likely be uploaded to the internet or emailed to 

friends, the size of the exported files is a major concern. In contrast, the quality 

of the videos needs to be high in order to meet today’s expectations. Cinder 

offers various encoding methods in its QuickTime library and the quality can 

also be adjusted. Therefore, tests needed to be carried out on the system to 

find the best compromise between file size and video quality.  

 

Three different encoding methods were tested; these were the H.264, MP4 

and JPEG. Also six different quality settings were tested, from 100% to 50% in 

10% intervals. The different combinations of codec and quality will identify 

which settings form the best compromise. All combinations were tested on a 

save file 50 frames long with one puppet and at the default window resolution. 

The results of these tests are shown in Figure 6.2, where the results are the file 

size in kilobytes. 

 

 
Figure 6.2 – Graph displaying file sizes of exported videos using different codecs and at 

different qualities 

 

From the results it is clear to see that both the codec and quality have a 

large impact on the file sizes. JPEG compression produces the largest files, 

whereas the H.264 codec produces the smallest files in these tests. By visually 

analysing the exported videos, it was found that the reduction in quality was 

0

2000

4000

6000

8000

10000

12000

50% 60% 70% 80% 90% 100%

F
il
e
 S

iz
e
 (

K
B

) 

Quality 

H.264

MP4

JPEG



CHAPTER 6: RESULTS AND DISCUSSION 

55 

only noticeable at and below 70%. Enabling the flicker effect makes this even 

more apparent.  

 

The quality is therefore to be set halfway between 70% and 80% to ensure 

that the reduction in quality is barely noticeable and that the file size can 

remain as small as possible. The visual difference between H.264 and MP4 was 

also insignificant so based on the results collected, the best compression method 

to use in this system is the H.264 codec. These are the settings that have been 

implemented into the system, providing the best possible balance between file 

size and quality. 

 

6.6 Requirements Evaluation 

The most important area of system testing is the requirements evaluation. This 

is where the system is compared to the requirements outlined in Section 3.1 to 

identify which areas were completed and which areas were not. Using this can 

help to evaluate how successful the system has been in terms of the quality of 

the programming and the user acceptability. These requirements and the 

results of this evaluation can be seen in Table 6.8. 

 

  



CHAPTER 6: RESULTS AND DISCUSSION 

56 

ID Requirement Evaluation 

1 
Users movements must be tracked using the 
Kinect and used to control onscreen puppets 

Passed 

2 
The system should support multiple user 
tracking and puppets 

Passed (up to two) 

3 
The system must run in real-time at a frame 
rate of at least 30 frames per second 

Passed 

4 
The system must include depth blurring based 

on the user’s distance from the Kinect device 
Passed 

5 
The blur must be run in real-time with the rest 
of the system 

Passed 

6 
Users must be able to record shadow plays 
created with the system 

Passed 

7 
Users must be able to playback saved shadow 
plays using the system 

Passed 

8 
Users must be able to playback saved shadow 
plays using an external video player 

Passed 

9 
A gesture recognition system must be used to 
trigger storytelling events 

Passed 

10 Gesture recognition must be robust and reliable  Passed 

11 
Users must be able to customise gestures by 
creating their own or changing the actions of 
gestures 

Failed (Considered but 
dropped due to lack of 
time) 

12 
Puppets must be able to interact with objects 
and the scene using physics interactions 

Failed (Due to lack of 
time but possibility for 
the future) 

13 The system must be intuitive and easy to use 
Passed (help available 
in the system) 

14 
UI elements such as tooltips must be clear and 
easily readable on any background 

Passed (using a white 
background) 

15 
The on-screen puppets must move in a realistic 
and plausible way 

Passed (using four 
joints) 

16 The blur effect must look realistic Passed 

17 Gestures must be simple and easy to perform Passed 

18 
Custom puppets, background images and music 
must be supported 

Partial (music only) 

19 
Background elements must shift using parallax 

effects based on the user’s position 
Failed (But user can 
change backgrounds) 

Table 6.8 – Requirements evaluation 



CHAPTER 6: RESULTS AND DISCUSSION 

57 

 

From this evaluation it is clear to see that the majority of tasks have been 

completed successfully. Only 3 out of the 19 requirements were not 

accomplished due to a lack of time in the project, and these three requirements 

were all optional. This means that all the essential and desirable requirements 

have been achieved and that the system has fulfils its original purpose. 

Therefore it can be regarded as a success in this area. 

 

6.7 Further Work 

Although the system has been largely successful, there are still areas where it 

could be improved. Future work developing the system would allow for many 

extra features including ones which were just outside the scope of this project.  

 

One of the main areas for improvement as noted by one test user is 

narration or captions for stories. In the current system, stories consist of 

characters moving around the screen with accompanying music, but no actual 

story is told. Whilst many traditional Wayang Kulit performances tell stories 

this way, narration in the form of recorded audio or onscreen captions at key 

points in the story would greatly enhance the storytelling experience for the 

user. 

 

On the other hand, adding captions would require a story editor which 

allowed the user to add strings of text at key points of the story. This editor 

could also be given the ability to trim and rearrange parts of stories to create a 

larger, more complex story. Again this was considered, but ultimately dropped 

due to the advanced stage the project had reached.  

 

Similar to the story editor, a gesture editor could be implemented into the 

system. This would be used to modify gesture files and allow new gestures to 

be added, tailoring the system for that particular user. However, there is added 

complexity to this as new gestures may be incompatible with the current DTW 

setup, and the user would need to adjust the gesture recognition threshold to 

ensure that the system is at the correct sensitivity. Leaving this threshold 

untouched could mean that the gesture recognition algorithm may not detect 

all custom gestures. 

 

The gestures in this system are designed to be easily recognised by the 

Kinect and the recognition algorithm and modifying the existing gestures may 

cause the application to become less responsive, so a reset function would also 

be required. Much like the other features, this gesture editor would have taken 

too much time to implement and was not considered in this project.  

 

Audio recording was investigated during this project for video exporting 

but it was found that the QuickTime library used to export stories as video 



CHAPTER 6: RESULTS AND DISCUSSION 

58 

files did not support audio output. This meant that the whole video recording 

system would need to be redesigned using a different library to allow audio 

tracks to be stored in the video file, and this was unfortunately outside the 

scope of the project. In the future, the system could be updated to use a 

different video exporting library that supports audio output. 

 

Finally a more advanced feature which could be added is interactive 

objects. The ability for users to spawn in objects and manipulate them with the 

puppets would greatly increase the appeal of the system. The objects could also 

be physics-based, interacting with the window with effects such as bouncing. 

Objects and animals do appear in traditional shadow puppet shows and would 

be a worthwhile addition to the system, but due to the time required to 

implement such a feature, this addition never advanced beyond just an idea. 

 

These are just a few ways the system could be expanded, and there are 

surely many more areas which could be improved in time. For instance the 

system performance could be improved on less powerful systems and the code 

could be generally optimised. However given the time constraints of this 

project, the system has managed to accomplish the requirements set at the 

beginning and therefore has fulfilled its purpose.



 

59 

Chapter 7:  Conclusions

The goal of this project was to build a real-time shadow puppet storytelling 

application using the Microsoft Kinect sensor. The project began with initial 

research into all the areas that would be covered in the project. This included 

general research into Indonesian shadow puppetry, the Kinect sensor and how 

it can be used for systems such as this one, image processing techniques which 

allow effects such as blurring, and also how gesture recognition can be 

implemented using efficient and reliable algorithms. 

 

This research revealed many techniques which could be used in this system 

so the next step was to create a formal list of system requirements. These 

would be used to keep the project development on track and to evaluate the 

system later on. The project was also to follow the iterative and incremental 

development model which would enforce continual testing and short 

development cycles. 

 

There were two options for which programming language to create the 

system in, and these were Java and C++. Both languages would also be 

accompanied by a graphical framework; for Java, the Processing framework 

would be used and for C++, the Cinder framework. Based on the performance 

advantages of C++ and the real-time requirements of the project, C++ and 

Cinder were chosen for the systems development. As a Java programmer, this 

presented its own challenge and there was a steep learning curve adapting to 

the new language and setting up the environment. 

 

Implementing the system began as soon as possible. Using the KinectSDK 

Cinder Block, a basic skeleton tracking application was developed and shortly 

after, puppets were attached to the joints and bones of the skeletons. The basic 

functionality of the system was achieved. From here, the real-time blur effect 

would be implemented next. 

 

From the multiple blurring algorithms, a two-pass Gaussian blur was 

chosen. This was for its efficiency in real-time applications and its visually 

appealing results. However to achieve two passes, the puppet must be rendered 

to an intermediate texture. OpenGL includes FBO’s which provide this exact 

functionality and with this in combination with OpenGL shaders, the blur 

algorithm was in effect. The final step was to take the depth value and modify 

the blur’s neighbourhood size accordingly. 

 

Saving stories was the next step. By designing a file format to store 

parameters in, it was simple to implement a basic recording and playback 



CHAPTER 7: CONCLUSIONS 

60 

feature using C++’s file stream libraries. The difficulties in this area revolved 

around error checking and playback. As the system needed to be robust, a lot 

of work went into testing file validation to ensure the system did not crash due 

to invalid file inputs. Given Cinder includes the QuickTime library, video 

exporting was also introduced. However, instead of exporting live data from the 

Kinect as planned, the system converts saved stories into video files. This was 

due to performance issues faced with real-time video exporting. 

 

The last major feature to implement was gesture recognition. A DTW 

algorithm was chosen and various reference gestures were created. The initial 

plan was to store every live frame and for each one, run the algorithm against 

every stored gesture. This was incredibly inefficient and an alternative method 

was devised. Users now have to perform an initial pose to indicate they are 

about to perform a gesture, and the following frames are stored and compared. 

This is much more efficient than the initial implementation which is vital 

consideration in a real-time system. 

 

Various tests were performed on each aspect of the system including both 

unit and system tests. A requirements evaluation was also conducted to see 

how well the system achieves its purpose. On the whole, the system was 

received very well and passed the majority of the tests performed. This 

indicated that the system is very robust and that users found it easy to 

navigate around the features and enjoyed using the system.  

 

Overall, the system that has been developed has fulfilled its purpose and 

the project has been largely successful. Test users agree that the Indonesian 

style is visually appealing and that there are many storytelling capabilities 

included. However, they also pointed out that gesture recognition is a weak 

area that could be improved. There is much room for expansion in the system 

such as implementing interactive objects or supporting custom gestures, 

something which could improve the existing gesture support. Due to time 

constraints, these were unfortunately out of the scope of this project but could 

be added to the system in the future.  



 

61 

References 

Anon., 2006. ANALOG DEVICES AND NINTENDO COLLABORATION 

DRIVES VIDEO GAME INNOVATION WITH IMEMS MOTION SIGNAL 

PROCESSING TECHNOLOGY. [Online]  

Available at: http://www.analog.com/en/press-

release/May_09_2006_ADI_Nintendo_Collaboration/press.html 

[Accessed 6 December 2013]. 

Anon., 2010. PrimeSense Supplies 3-D-Sensing Technology to “Project 

Natal” for Xbox 360. [Online]  

Available at: http://www.microsoft.com/en-us/news/press/2010/mar10/03-

31primesensepr.aspx 

[Accessed 26 November 2013]. 

Anon., n.d. About Cinder. [Online]  

Available at: http://libcinder.org/about 

[Accessed 28 November 2013]. 

Anon., n.d. About openFrameworks. [Online]  

Available at: http://www.openframeworks.cc/about 

[Accessed 28 November 2013]. 

Anon., n.d. AntTweakBar. [Online]  

Available at: anttweakbar.sourceforge.net/doc/ 

[Accessed 1 April 2014]. 

Anon., n.d. Kinect for Windows features. [Online]  

Available at: http://www.microsoft.com/en-

us/kinectforwindows/discover/features.aspx 

[Accessed 26 November 2013]. 

Anon., n.d. OpenGL Overview. [Online]  

Available at: http://www.opengl.org/about 

[Accessed 28 November 2013]. 

Anon., n.d. Overview. A short introduction to the Processing software and 

projects from the community.. [Online]  

Available at: http://www.processing.org/overview 

[Accessed 28 November 2013]. 



 

62 

Anon., n.d. PrimeSense NITE. [Online]  

Available at: http://www.openni.org/files/nite 

[Accessed 27 November 2013]. 

Anon., n.d. PrimeSense Technology. [Online]  

Available at: http://www.primesense.com/solutions/technology 

[Accessed 26 November 2013]. 

Anon., n.d. Wayang Kulit of Indonesia. [Online]  

Available at: http://www.balibeyond.com/wayang.html 

[Accessed 1 December 2013]. 

Beaumont, C., 2009. E3 2009: Project Natal hands-on preview. [Online]  

Available at: http://www.telegraph.co.uk/technology/e3-2009/5437978/E3-

2009-Project-Natal-hands-on-preview.html 

[Accessed 26 November 2013]. 

Beck, K., 2001. Manifesto for Agile Software Development. [Online]  

Available at: agilemanifesto.org 

[Accessed 20 April 2014]. 

Cockburn, A., 2008. Using Both Incremental and Iterative Development. 

STSC CrossTalk (USAF Software Technology Support Center), 21(5), pp. 27-

30. 

Gavrila, D. & Davis, L., 1995. Towards 3-D model-based tracking and 

recognition of human movement: a multi-view approach. s.l.:International 

Workshop on automatic face-and gesture-recognition. 

Horn, B., 1986. Robot Vision. s.l.:MIT Presss. 

Isaac, M. & Paczkowski, J., 2013. Apple Confirms Acquisition of 3-D 

Sensor Startup PrimeSense. [Online]  

Available at: http://allthingsd.com/20131124/apple-confirms-acquisition-of-3d-

sensor-startup-primesense/ 

[Accessed 26 November 2013]. 

Kang, J.-w., Seo, D.-j. & Jung, D.-s., 2011. A Study on the control Method 

of 3-Dimensional Space Application using KINECT System. IJCSNS 

International Journal of Computer Science and Network Security, 11(9), pp. 

55-59. 

Kraft, C., 2010. Open Source Kinect contest has been won. [Online]  

Available at: http://hackaday.com/2010/11/11/open-source-kinect-contest-has-

been-won/ 

[Accessed 27 November 2013]. 



 

63 

Kumar, M., 2009. Develop 2009: SCEE’s Hirani Reveals PS Eye Facial 

Recognition, Motion Controller Details. [Online]  

Available at: http://www.gamasutra.com/php-

bin/news_index.php?story=24456 

[Accessed 6 December 2013]. 

Lee, S., Jounghyun Kim, G. & Choi, S., 2009. Real-Time Depth-of-Field 

Rendering Using Anisotropically Filtered Mipmap Interpolation. Visualization 

and Computer Graphics, IEEE Transactions on, 15(3), pp. 453-464. 

Leyvand, T. et al., 2011. Kinect Identity: Technology and Experience, s.l.: 

IEEE Computer Society. 

Long, R., 1982. Javanese shadow theatre: movement and characterization in 

Ngayogyakarta wayang kulit. s.l.:Ann Arbor, Mich.: UMI Research Press. 

Miller, M. J., 2011. PrimeSense: Motion Control Beyond the Kinect. 

[Online]  

Available at: http://forwardthinking.pcmag.com/gadgets/282321-primesense-

motion-control-beyond-the-kinect 

[Accessed 26 November 2013]. 

Mitchell, R., 2010. PrimeSense releases open source drivers, middleware 

that work with Kinect. [Online]  

Available at: http://www.joystiq.com/2010/12/10/primesense-releases-open-

source-drivers-middleware-for-kinect/ 

[Accessed 27 November 2013]. 

O'Brien, T., n.d. Microsoft's new Kinect is official: larger field of view, HD 

camera, wake with voice. [Online]  

Available at: http://www.engadget.com/2013/05/21/microsofts-new-kinect-is-

official/ 

[Accessed 26 November 2013]. 

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T., 1989. 

Numerical Recipes in Pascal. 1st ed. s.l.:Cambridge University Press. 

Reyes, M., Gabriel, D. & Sergio, E., 2011. Feature Weighting in Dynamic 

Time Warping for Gesture Recognition in Depth Data. Computer Vision 

Workshops (ICCV Workshops), 2011 IEEE International Conference on, pp. 

1182-1188. 

Russ, J. C., 2006. The Image Processing Handbook. s.l.:CRC press. 



 

64 

Schielberl, S., 2011. KinectSdk for Cinder. [Online]  

Available at: http://www.bantherewind.com/kinectsdk-for-cinder 

[Accessed 27 November 2013]. 

Silbert, S., n.d. Microsoft: next-gen Kinect sensor for Windows to launch in 

2014. [Online]  

Available at: http://www.engadget.com/2013/05/23/microsoft-next-gen-kinect-

sensor-for-windows-launch-in-2014/ 

[Accessed 26 November 2013]. 

Sonka, M., Hlavac, V. & Boyle, R., 1999. Image Processing, Analysis, and 

Machine Vision. s.l.:s.n. 

Starner, T. E., 1995. Visual Recognition of American Sign Language Using 

Hidden Markov Models, s.l.: Massachusetts Inst of Tech Cambridge Dept of 

Brain and Cognitive Sciences. 

Visnjic, F., 2012. Puppet Parade. [Online]  

Available at: http://www.creativeapplications.net/openframeworks/puppet-

parade-openframeworks/]  

[Accessed 28 November 2013]. 

Warade, S., Aghav, J., Claude, P. & Udayagiri, S., 2012. Real-Time 

Detection and Tracking with Kinect, Bangkok: Intl. Conf. Comp. Info. Tech.. 

Zeng, W., 2012. Microsoft Kinect Sensor and Its Effect, s.l.: IEEE 

Multimedia. 

 

  



 

65 

Table of Figures 

Figure 2.1 – A shadow puppet theatre setup ...................................................... 3 

Figure 2.2 – Wayang Kulit shadow puppets ....................................................... 4 

Figure 2.3 – PrimeSense’s depth sensing technology explained .......................... 6 

Figure 2.4 – The Kinect skeletal tracking pipeline .............................................. 9 

Figure 2.5 – A two dimensional plot of a Gaussian function ............................ 12 

Figure 2.6 – From left to right: Original image, Image with box blur, Image 

with Gaussian blur ............................................................................................. 13 

Figure 2.7 – A dynamic time warping grid visualising two time sequences and 

the shortest distance path between them .......................................................... 15 

Figure 2.8 – Two time sequences with their Euclidian and dynamic time 

warped distance measures at each point in time ............................................... 16 

Figure 4.1 – Flow Diagram of the system ......................................................... 25 

Figure 4.2 – Flow Diagram of the Render FBO function ................................. 26 

Figure 4.3 – Mock-up of the application window in Live Mode ........................ 28 

Figure 5.1 – The three puppet textures used for Puppet 1 ............................... 33 

Figure 5.2 – Graph visualising the Gaussian filter kernel used in the system .. 36 

Figure 5.3 – A puppet in normal and blurred states ......................................... 37 

Figure 5.4 – Left: A puppet performing the gesture pose. Middle: A puppet 

performing a gesture. Right: The successful gesture recognition ....................... 41 

Figure 5.5 – Gesture hints displaying previews of the different gestures 

available in the system ...................................................................................... 42 

Figure 5.6 – The AntTweakBar GUI used in the system ................................. 43 

Figure 6.1 – Graph visualising the average response for each question in the 

questionnaire ...................................................................................................... 46 

Figure 6.2 – Graph displaying file sizes of exported videos using different 

codecs and at different qualities ........................................................................ 54 
 


